训练多层感知器时,纪元和迭代之间有什么区别?
artificial-intelligence terminology machine-learning neural-network deep-learning
什么是"相同"和"有效"填充之间的区别tf.nn.max_pool的tensorflow?
在我看来,'VALID'意味着当我们做最大池时,边缘外没有零填充.
根据深度学习的卷积算法指南,它表示池操作符中没有填充,即只使用'VALID' tensorflow.但是什么是最大池的"相同"填充tensorflow?
我试图调和我对LSTM的理解,并在克里斯托弗·奥拉在克拉拉斯实施的这篇文章中指出.我正在关注Jason Brownlee为Keras教程撰写的博客.我主要困惑的是,
[samples, time steps, features]和,让我们参考下面粘贴的代码集中讨论上述两个问题:
# reshape into X=t and Y=t+1
look_back = 3
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], look_back, 1))
testX = numpy.reshape(testX, (testX.shape[0], look_back, 1))
########################
# The IMPORTANT BIT
##########################
# create and fit the LSTM network
batch_size = 1
model = Sequential()
model.add(LSTM(4, …Run Code Online (Sandbox Code Playgroud) 在下面的TensorFlow函数中,我们必须在最后一层中提供人工神经元的激活.我明白了 但我不明白为什么它被称为logits?这不是一个数学函数吗?
loss_function = tf.nn.softmax_cross_entropy_with_logits(
logits = last_layer,
labels = target_output
)
Run Code Online (Sandbox Code Playgroud) machine-learning neural-network deep-learning tensorflow cross-entropy
对于任何Keras层(Layer类),可有人解释如何理解之间的区别input_shape,units,dim,等?
例如,doc说明了units指定图层的输出形状.
在神经网络的图像下面hidden layer1有4个单位.这是否直接转换为对象的units属性Layer?或者units在Keras中,隐藏层中每个权重的形状是否等于单位数?
当我使用Theano或Tensorflow训练我的神经网络时,他们将报告每个时期称为"损失"的变量.
我该如何解释这个变量?更高或更低的损失,或者它对我的神经网络的最终性能(准确性)意味着什么?
machine-learning mathematical-optimization neural-network deep-learning objective-function
tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None)
Run Code Online (Sandbox Code Playgroud)
我无法理解这个功能的职责.它是否像查找表?这意味着返回与每个id(在id中)对应的参数?
例如,skip-gram如果我们使用模型tf.nn.embedding_lookup(embeddings, train_inputs),那么每个模型都会train_input找到相应的嵌入?
python deep-learning tensorflow word-embedding natural-language-processing
我正在寻找在PyTorch中保存训练模型的替代方法.到目前为止,我找到了两种选择.
我的问题是,为什么第二种方法更受欢迎?是否因为torch.nn模块具有这两个功能而我们被鼓励使用它们?
我正在尝试培训CNN按主题对文本进行分类.当我使用binary_crossentropy时,我得到~80%acc,而categorical_crossentrop我得到~50%acc.
我不明白为什么会这样.这是一个多类问题,这是否意味着我必须使用分类,二进制结果是没有意义的?
model.add(embedding_layer)
model.add(Dropout(0.25))
# convolution layers
model.add(Conv1D(nb_filter=32,
filter_length=4,
border_mode='valid',
activation='relu'))
model.add(MaxPooling1D(pool_length=2))
# dense layers
model.add(Flatten())
model.add(Dense(256))
model.add(Dropout(0.25))
model.add(Activation('relu'))
# output layer
model.add(Dense(len(class_id_index)))
model.add(Activation('softmax'))
Run Code Online (Sandbox Code Playgroud)
然后
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
Run Code Online (Sandbox Code Playgroud)
要么
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
Run Code Online (Sandbox Code Playgroud) machine-learning neural-network deep-learning conv-neural-network keras
我一直在读神经网络上的一些东西,我理解单层神经网络的一般原理.我理解对aditional图层的需求,但为什么要使用非线性激活函数?
这个问题之后是这个问题:用于反向传播的激活函数的衍生物是什么?
deep-learning ×10
python ×4
keras ×3
tensorflow ×3
tensor ×2
keras-layer ×1
lstm ×1
math ×1
natural-language-processing ×1
pytorch ×1
terminology ×1