当我在R和类似Excel的电子表格软件(例如Gnumeric Spreadsheet和WPS)中对我的数据进行简单的线性拟合时,我遇到了一个奇怪的问题.
下面的数据是19对x和y
93.37262737 56200
101.406044 62850
89.27322677 56425
86.9458042 43325
70.54645355 42775
85.1936032 38375
72.10985 38376
73.54055944 22950
78.092 15225
71.30285 12850
70.03953023 18125
66.31068931 14200
93.39847716 13925
66.09695152 13225
70.6549 18125
76.43348868 14125
71.37531234 14875
85.7953977 19275
95.65012506 45375
Run Code Online (Sandbox Code Playgroud)
并保存在名为'data.csv'的文件中
我在x和y之间进行线性拟合.R脚本如下:
data<-read.csv("data.csv",col.names=c("x","y"))
# plot data
plot(data$x,data$y)
#Fit
lmodelx<-lm(data$y~data$x)
abline(lmodelx)
summary(lmodelx)
Run Code Online (Sandbox Code Playgroud)
这给出了这个结果:
Call:
lm(formula = data$y ~ data$x)
Residuals:
Min 1Q Median 3Q Max
-27855 -7151 -1314 6947 23014
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -48212.8 23691.0 …Run Code Online (Sandbox Code Playgroud) 您好,我有数据集(麦克斯韦和高斯),我用它们绘制直方图。我使用 scipy.stats.chisquare 拟合数据,但默认情况下,自由度为 0。如果我理解正确,这是不可能的,对吗?
尝试使用交叉折叠重采样并拟合 Ranger 包中的随机森林。无需重新采样的拟合工作正常,但一旦我尝试重新采样拟合,它就会失败并出现以下错误。
考虑以下df
df<-structure(list(a = c(1379405931, 732812609, 18614430, 1961678341,
2362202769, 55687714, 72044715, 236503454, 61988734, 2524712675,
98081131, 1366513385, 48203585, 697397991, 28132854), b = structure(c(1L,
6L, 2L, 5L, 7L, 8L, 8L, 1L, 3L, 4L, 3L, 5L, 7L, 2L, 2L), .Label = c("CA",
"IA", "IL", "LA", "MA", "MN", "TX", "WI"), class = "factor"),
c = structure(c(2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L,
2L, 2L, 2L, 1L), .Label = c("R", "U"), class = "factor"),
d = structure(c(3L, 3L, …Run Code Online (Sandbox Code Playgroud) data-fitting ×4
r ×2
excel ×1
kernel ×1
python ×1
r-ranger ×1
scipy ×1
statistics ×1
tidymodels ×1