如果我问了一个愚蠢的问题,我很抱歉。我是 CUDA 的新手。使用 Runfile 方法安装了 CUDA 10.1 并根据 Nvidia 说明进行了以下导出:
export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64:$LD_LIBRARY_PATH
export PATH=$PATH:/usr/local/cuda-10.1/bin
Run Code Online (Sandbox Code Playgroud)
然后我尝试添加 cuDNN 库。但是我在下面找到了两个 CUDA 文件夹/use/local:
cuda
cuda-10.1
Run Code Online (Sandbox Code Playgroud)
我nvcc -V在两个文件夹中运行,它们都是 10.1 版。所以现在我有两个问题:
我应该cuDNN库复制到cuda/include或cuda-10.1/include或两者兼而有之?
为什么我得到两个文件夹?似乎它们包含完全相同的文件。我应该删除其中之一以使事情干净吗?
我正在尝试使用 cuda 10.2 构建 opencv'。当执行以下命令时:
cmake -DCMAKE_BUILD_TYPE=RELEASE \
-DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
-DWITH_TBB=ON -DWITH_CUDA=ON \
-DBUILD_opencv_cudacodec=OFF \
-DENABLE_FAST_MATH=1 \
-DWITH_CUBLAS=1 \
-DWITH_V4L=ON \
-DWITH_OPENGL=ON \
-DWITH_GSTREAMER=ON \
-DOPENCV_GENERATE_PKGCONFIG=ON \
-DOPENCV_ENABLE_NONFREE=ON \
-DBUILD_EXAMPLES=TRUE \
-DBUILD_PERF_TESTS=FALSE \
-DEBUILD_TESTS=FALSE ../../opencv
Run Code Online (Sandbox Code Playgroud)
我有以下问题:
Could NOT find CUDNN (missing: CUDNN_LIBRARY CUDNN_INCLUDE_DIR) (Required is at least version "6")
Run Code Online (Sandbox Code Playgroud)
当然我已经安装了cuda 10.2对应的cudnn7,我安装测试通过了。
有人可以帮忙吗?
我正在编写一个简单的多流 CUDA 应用程序。cuda-streams以下是我创建,cublas-handle和的代码部分cudnn-handle:
cudaSetDevice(0);
int num_streams = 1;
cudaStream_t streams[num_streams];
cudnnHandle_t mCudnnHandle[num_streams];
cublasHandle_t mCublasHandle[num_streams];
for (int ii = 0; ii < num_streams; ii++) {
cudaStreamCreateWithFlags(&streams[ii], cudaStreamNonBlocking);
cublasCreate(&mCublasHandle[ii]);
cublasSetStream(mCublasHandle[ii], streams[ii]);
cudnnCreate(&mCudnnHandle[ii]);
cudnnSetStream(mCudnnHandle[ii], streams[ii]);
}
Run Code Online (Sandbox Code Playgroud)
现在,我的流计数为 1。但是当我使用 Nvidia Visual Profiler 分析上述应用程序的可执行文件时,我得到以下信息:
对于我创建的每个流,它会另外创建 4 个流。我用 进行了测试num_streams = 8,它在分析器中显示了 40 个流。它在我心中提出了以下问题:
cudnn创建流?如果是,那为什么?我正在按照官方页面上的说明和“验证您的安装”步骤安装 Tensorflow 。
>>> sess = tf.Session()
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU …Run Code Online (Sandbox Code Playgroud) 我使用谷歌合作实验室训练可能的数据集。我将数据集上传到了Google云端硬盘,并从Google Colab调用了该数据集。但是运行train.py脚本意味着出现以下错误。更确切地说,我跑:
!python3 /content/drive/tensorflow1/models/research/object_detection/train.py --logtostderr --train_dir=/content/drive/tensorflow1/models/research/object_detection/training/ --pipeline_config_path=/content/drive/tensorflow1/models/research/object_detection/training/faster_rcnn_inception_v2_pets.config
Run Code Online (Sandbox Code Playgroud)
我得到这些错误:
Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module>
from tensorflow.python.pywrap_tensorflow_internal import *
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module>
_pywrap_tensorflow_internal = swig_import_helper()
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "/usr/lib/python3.6/imp.py", line 243, in load_module
return load_dynamic(name, filename, file)
File "/usr/lib/python3.6/imp.py", line 343, in load_dynamic
return _load(spec)
ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
During handling of the above exception, …Run Code Online (Sandbox Code Playgroud) 当我通过 Conda 安装 tensorflow-gpu 时;它给了我以下输出:
conda install tensorflow-gpu
Collecting package metadata (current_repodata.json): done
Solving environment: done
## Package Plan ##
environment location: /home/psychotechnopath/anaconda3/envs/DeepLearning3.6
added / updated specs:
- tensorflow-gpu
The following packages will be downloaded:
package | build
---------------------------|-----------------
_tflow_select-2.1.0 | gpu 2 KB
cudatoolkit-10.1.243 | h6bb024c_0 347.4 MB
cudnn-7.6.5 | cuda10.1_0 179.9 MB
cupti-10.1.168 | 0 1.4 MB
tensorflow-2.1.0 |gpu_py36h2e5cdaa_0 4 KB
tensorflow-base-2.1.0 |gpu_py36h6c5654b_0 155.9 MB
tensorflow-gpu-2.1.0 | h0d30ee6_0 3 KB
------------------------------------------------------------
Total: 684.7 MB
The following NEW packages …Run Code Online (Sandbox Code Playgroud)