标签: checkpoint

Tensorflow:如何将.meta,.data和.index模型文件转换为一个graph.pb文件

在tensorflow中,从头开始训练产生以下6个文件:

  1. events.out.tfevents.1503494436.06L7-BRM738
  2. model.ckpt-22480.meta
  3. 检查站
  4. model.ckpt-22480.data 00000-的-00001
  5. model.ckpt-22480.index
  6. graph.pbtxt

我想将它们(或仅需要的)转换为一个文件graph.pb,以便能够将其传输到我的Android应用程序.

我尝试了脚本,freeze_graph.py但它需要输入我还没有的input.pb文件.(我之前只提到过这6个文件).如何获取这个freezed_graph.pb文件?我看到几个线程,但没有一个为我工作.

meta model graph checkpoint tensorflow

26
推荐指数
2
解决办法
2万
查看次数

IE11中的"SSL网络扩展器服务已关闭"错误

使用CheckPoint我正在尝试使用从工作到我的客户端站点的VPN访问,这在Windows 7和8中运行良好.但在Windows 10中,我收到错误"ssl网络扩展器服务已关闭......"

当CheckPoint尝试连接时,我在请求开始时收到错误消息.

尝试运行作为另一个浏览器模拟的Internet Explorer无效.

ssl internet-explorer checkpoint internet-explorer-11 windows-10

22
推荐指数
2
解决办法
6万
查看次数

2012年TFS中的SVN标记等效

我最近迁移到TFS 2012,我和SVN合作了很长时间.

在SVN中,我使用" Tags "来标记开发的一些重要" 检查点 ",即当我完成软件版本(alpha,beta)时,我为该版本创建了一个Tag.如果发生了一些错误,我就会受到 " 保护 ".

现在,我需要在TFS源代码控制中使用相同的行为(或等效),但我对它的结构感到困惑.

我如何在TFS中使用" 标记 " ?

svn tags checkpoint tfs2012

9
推荐指数
1
解决办法
5311
查看次数

在Linux中使用Core Dump进行检查点/重启

可以使用进程的核心转储实现Checkpoint/restart吗?核心文件包含进程的完整内存转储,因此理论上应该可以将进程恢复到转储核心时的状态.

linux coredump checkpoint

9
推荐指数
3
解决办法
2609
查看次数

Checkpoint VPN问题:与VPN服务的连接丢失

我为Windows 8 SecuRemote安装了检查点E75.30客户端.当我尝试使用SecuRemote(请参阅客户端;添加客户端;请参阅选项)时,我得到的是"与VPN服务的连接丢失"我查看了服务并且Check Point端点安全VPN服务未自动启动.当我尝试手动启动时,我得到错误1075:依赖关系服务不存在或已被标记为删除依赖关系服务是DHCP客户端运行良好...任何想法?

windows vpn checkpoint

9
推荐指数
4
解决办法
6万
查看次数

Tensorflow:成功恢复检查点后丢失重置

保存或恢复时没有错误.权重似乎已正确恢复.

我试图通过遵循karpathy/min-char-rnn.py,sherjilozair/char-rnn-tensorflowTensorflow RNN教程来构建我自己的最小字符级RNN .我的脚本似乎按预期工作,除非我尝试恢复/恢复培训.

如果我重新启动脚本并从检查点恢复然后恢复训练,则丢失将始终恢复,就像没有检查点一样(尽管权重已正确恢复).但是,在脚本执行期间,如果我重置图形,启动新会话并恢复,那么我可以按预期继续最小化损失.

我试图在我的桌面(使用GPU)和笔记本电脑(仅限CPU)上运行此操作,两者都在Windows上使用Tensorflow 0.12.

下面是我的代码,我在这里上传了代码+数据+控制台输出:https: //gist.github.com/dk1027/777c3da7ba1ff7739b5f5e89491bef73

import numpy as np
import tensorflow as tf
from tensorflow.python.ops import rnn_cell

class model_input:

    def __init__(self,data_path, batch_size, steps):
        self.batch_idx = 0
        self.data_path = data_path
        self.steps = steps
        self.batch_size = batch_size
        data = open(self.data_path).read()
        data_size = len(data)
        self.vocab = set(data)
        self.vocab_size = len(self.vocab)
        self.vocab_to_idx = {v:i for i,v in enumerate(self.vocab)}
        self.idx_to_vocab = {i:v for i,v in enumerate(self.vocab)}
        c = self.batch_size * self.steps
        #Offset by …
Run Code Online (Sandbox Code Playgroud)

restore reset loss checkpoint tensorflow

9
推荐指数
1
解决办法
893
查看次数

SQL Server检查点

任何人都可以解释SQL Server何时发出检查点?

sql-server checkpoint

7
推荐指数
1
解决办法
1万
查看次数

如何在Logstash过滤器中删除具有NULL值的所有字段

我正在使用带有logstash的csv格式读取检查点日志文件,并且某些字段具有空值.

我想删除所有具有空值的字段.

我无法确切地预测哪些字段(键)将具有空值,因为我在csv文件中有150列,我不想检查它们中的每一个.

是否可以在logstash中执行动态过滤器,删除任何具有空值的字段?

我的logstash配置文件看起来像这样:

input {
  stdin { tags => "checkpoint" } 
   file {
   type => "file-input"
   path =>  "D:\Browser Downloads\logstash\logstash-1.4.2\bin\checkpoint.csv"
   sincedb_path => "D:\Browser Downloads\logstash\logstash-1.4.2\bin\sincedb-access2"
   start_position => "beginning"
   tags => ["checkpoint","offline"]
  }
}
filter {
 if "checkpoint" in [tags] {
        csv {
        columns => ["num","date","time","orig","type","action","alert","i/f_name","i/f_dir","product","Internal_CA:","serial_num:","dn:","sys_message:","inzone","outzone","rule","rule_uid","rule_name","service_id","src","dst","proto","service","s_port","dynamic object","change type","message_info","StormAgentName","StormAgentAction","TCP packet out of state","tcp_flags","xlatesrc","xlatedst","NAT_rulenum","NAT_addtnl_rulenum","xlatedport","xlatesport","fw_message","ICMP","ICMP Type","ICMP Code","DCE-RPC Interface UUID","rpc_prog","log_sys_message","scheme:","Validation log:","Reason:","Serial num:","Instruction:","fw_subproduct","vpn_feature_name","srckeyid","dstkeyid","user","methods:","peer gateway","IKE:","CookieI","CookieR","msgid","IKE notification:","Certificate DN:","IKE IDs:","partner","community","Session:","L2TP:","PPP:","MAC:","OM:","om_method:","assigned_IP:","machine:","reject_category","message:","VPN internal source IP","start_time","connection_uid","encryption failure:","vpn_user","Log ID","message","old IP","old port","new IP","new port","elapsed","connectivity_state","ctrl_category","description","description ","severity","auth_status","identity_src","snid","src_user_name","endpoint_ip","src_machine_name","src_user_group","src_machine_group","auth_method","identity_type","Authentication trial","roles","dst_user_name","dst_machine_name","spi","encryption fail reason:","information","error_description","domain_name","termination_reason","duration"]
      #  remove_field => [ any …
Run Code Online (Sandbox Code Playgroud)

logging checkpoint elasticsearch logstash

7
推荐指数
1
解决办法
1万
查看次数

如何在 SQLite android 中手动执行检查点?

我正在尝试创建 sqlite 数据库的备份,并且想首先刷新数据库中 WAL 文件的内容。

这是我的 SQLiteOpenHelper:

public class MyDBHelper extends SQLiteOpenHelper {

private Context mContext;
private static MyDBHelper mInstance = null;

private MyDBHelper(final Context context, String databaseName) {
    super(new MYDB(context), databaseName, null, DATABASE_VERSION);
    this.mContext = context;
}

@Override
public void onCreate(SQLiteDatabase db) {

}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

}
   public static MyDBHelper getInstance(Context context) {

    if (mInstance == null) {
        mInstance = new MyDBHelper(context, DATABASE_NAME);
    }
    return mInstance;
}

  private void closeDataBase(Context context) …
Run Code Online (Sandbox Code Playgroud)

sqlite mobile android checkpoint

6
推荐指数
1
解决办法
6019
查看次数

Keras 模型训练内存泄漏

我是 Keras、Tensorflow、Python 的新手,我正在尝试构建一个供个人使用/未来学习的模型。我刚开始使用 python,我想出了这段代码(在视频和教程的帮助下)。我的问题是,我对 Python 的内存使用量随着每个 epoch 甚至在构建新模型之后慢慢增加。一旦内存达到 100%,训练就会停止,没有错误/警告。我不太了解,但问题应该在循环内的某个地方(如果我没记错的话)。我知道

k.clear.session()

但问题要么没有被删除,要么我不知道如何将它集成到我的代码中。我有:Python v 3.6.4、Tensorflow 2.0.0rc1(cpu 版本)、Keras 2.3.0

这是我的代码:

import pandas as pd
import os
import time
import tensorflow as tf
import numpy as np
import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM, BatchNormalization
from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint

EPOCHS = 25
BATCH_SIZE = 32           

df = pd.read_csv("EntryData.csv", names=['1SH5', '1SHA', '1SA5', '1SAA', '1WH5', '1WHA',
                                         '2SA5', '2SAA', '2SH5', '2SHA', '2WA5', '2WAA',
                                         '3R1', '3R2', '3R3', '3R4', '3R5', '3R6',
                                         'Target'])

df_val …
Run Code Online (Sandbox Code Playgroud)

python memory checkpoint keras tensorflow

6
推荐指数
1
解决办法
6795
查看次数