我正在尝试创建和配置Azure Databricks SCIM 配置连接器,以便我可以从 AAD 在我的 Databricks 工作区中配置用户。
按照这些说明,我可以让它手动工作。也就是说,可以在 Azure 门户中创建和设置应用程序,并且我选择的用户可以在 Databricks 中同步。(这个过程并不完全简单。在做任何事情之前需要进行大量的摆弄,我不记得了,需要进行配置设置。)
当我尝试将其转换为 Terraform 时,我并没有走得太远:
我可以使用 Terraform 创建应用程序,使用创建 Databricks 工作区资源的相同服务主体:
data "azuread_application_template" "scim" {
display_name = "Azure Databricks SCIM Provisioning Connector"
}
resource "azuread_application" "scim" {
display_name = "${var.name}-scim"
template_id = data.azuread_application_template.scim.template_id
feature_tags {
enterprise = true
gallery = true
}
}
Run Code Online (Sandbox Code Playgroud)
同样,我可以非常轻松地为我的服务主体创建 Databricks 访问令牌:
resource "databricks_token" "scim" {
comment = "SCIM Integration"
}
Run Code Online (Sandbox Code Playgroud)
现在我被困住了:
azuread看起来合适的资源。azure scim azure-active-directory terraform azure-databricks
有人可以让我知道如何从 Azure sql server 上存在的表在 Azure Databricks 中创建表吗?(假设Databricks已经有到sql服务器的jdbc连接)。
例如,如果我的数据湖中的某个位置不存在该表,则以下命令将创建一个表。
CREATE TABLE IF NOT EXISTS newDB.MyTable USING delta LOCATION
'/mnt/dblake/BASE/Public/Adventureworks/delta/SalesLT.Product/'
Run Code Online (Sandbox Code Playgroud)
我想做同样的事情,但使用 SQL Server 上现有的表?
I would like to control the Workspace Settings in the Admin Console of Azure Databricks via API(REST)
How should I do this or does anyone have the list of keys which correspond to each setting?
Workspace Settings in Admin Console-Image:
正如标题所述,是否能够object definition使用 Databricks 查询视图SQL,特别是对于 Azure Databricks?
就像使用 SQL Server 时一样,我可以使用函数OBJECT_DEFINITION或存储过程查询视图定义以sp_helptext显示.SELECT statementViews
我查遍了互联网,没有找到对此进行解释的人。也许没有选择?
谢谢。
我想做一个简单的形状分析并绘制 shap.force_plot。我注意到它在 .ipynb 文件中本地工作没有任何问题,但在 Databricks 上失败并显示以下错误消息:
Visualization omitted, Javascript library not loaded!
Have you run `initjs()` in this notebook? If this notebook was from another user you must
also trust this notebook (File -> Trust notebook). If you are viewing this notebook on
github the Javascript has been stripped for security. If you are using JupyterLab this
error is because a JupyterLab extension has not yet been written.
Run Code Online (Sandbox Code Playgroud)
代码:
import xgboost
import shap
shap.initjs()
X, y = shap.datasets.boston()
bst = …Run Code Online (Sandbox Code Playgroud) 我们在 VNet 中使用 Azure Databricks 和单节点群集(运行时版本 10.4 LTS)。我们还需要使用自定义/私有 python 模块(wheel)。
在集群上安装库后,一切正常,但在集群重新启动并安装库后,执行任何单元时都会出现以下错误(取消/重新附加不能解决问题):
+ Failure starting repl. Try detaching and re-attaching the notebook.
java.lang.Exception: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.metastore.HiveMetaStoreClient
at org.apache.spark.sql.hive.HiveExternalCatalog.$anonfun$withClient$2(HiveExternalCatalog.scala:160)
at org.apache.spark.sql.hive.HiveExternalCatalog.maybeSynchronized(HiveExternalCatalog.scala:112)
at org.apache.spark.sql.hive.HiveExternalCatalog.$anonfun$withClient$1(HiveExternalCatalog.scala:150)
at com.databricks.backend.daemon.driver.ProgressReporter$.withStatusCode(ProgressReporter.scala:364)
at com.databricks.spark.util.SparkDatabricksProgressReporter$.withStatusCode(ProgressReporter.scala:34)
at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:149)
at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:300)
at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:201)
at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:192)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.externalCatalog(HiveSessionStateBuilder.scala:59)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.$anonfun$resourceLoader$1(HiveSessionStateBuilder.scala:66)
at org.apache.spark.sql.hive.HiveSessionResourceLoader.client$lzycompute(HiveSessionStateBuilder.scala:160)
at org.apache.spark.sql.hive.HiveSessionResourceLoader.client(HiveSessionStateBuilder.scala:160)
at org.apache.spark.sql.hive.HiveSessionResourceLoader.$anonfun$addJar$1(HiveSessionStateBuilder.scala:164)
at org.apache.spark.sql.hive.HiveSessionResourceLoader.$anonfun$addJar$1$adapted(HiveSessionStateBuilder.scala:163)
at scala.collection.immutable.List.foreach(List.scala:431)
at org.apache.spark.sql.hive.HiveSessionResourceLoader.addJar(HiveSessionStateBuilder.scala:163)
at org.apache.spark.sql.execution.command.AddJarsCommand.$anonfun$run$1(resources.scala:33)
at org.apache.spark.sql.execution.command.AddJarsCommand.$anonfun$run$1$adapted(resources.scala:33)
at scala.collection.immutable.Stream.foreach(Stream.scala:533)
at org.apache.spark.sql.execution.command.AddJarsCommand.run(resources.scala:33)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:80)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:78)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:89)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$$nestedInanonfun$eagerlyExecuteCommands$1$1.$anonfun$applyOrElse$1(QueryExecution.scala:160) …Run Code Online (Sandbox Code Playgroud) 在 databricks 中导入Pycaret time-series(beta)模块时,我收到以下错误(我们之前运行成功)。请求您帮助解决问题。
\n使用中的 pycaret 版本:
\nimport pycaret\npycaret.__version__ # Out[1]: '3.0.0'\nRun Code Online (Sandbox Code Playgroud)\n使用的python版本:
\nimport sys\nsys.version #Out[9]: '3.8.10 (default, Mar 15 2022, 12:22:08) \\n[GCC 9.4.0]'\nRun Code Online (Sandbox Code Playgroud)\n以下是该问题的堆栈跟踪。
\nfrom pycaret.time_series import TSForecastingExperiment\n\n/databricks/python_shell/dbruntime/PythonPackageImportsInstrumentation/__init__.py in import_patch(name, globals, locals, fromlist, level)\n 160 # Import the desired module. If you\xe2\x80\x99re seeing this while debugging a failed import,\n 161 # look at preceding stack frames for relevant error information.\n--> 162 original_result = python_builtin_import(name, globals, locals, fromlist, level)\n 163 \n 164 is_root_import …Run Code Online (Sandbox Code Playgroud) 我正在使用 Azure DevOps 存储库将 Azure databricks 连接到我在 DevOps 中的存储库。我需要从 Azure DevOps 管道自动拉取。为此,我尝试使用 databricks API 进行拉取,但参考此链接,没有拉取方法。
按照说明并查看 swagger ,唯一可用的方法是:
有没有办法通过 API 或 CLI 或任何其他方式以编程方式拉取?如果是,怎么办?
我的工作区根文件夹下有 2 个笔记本。使用 %run magic cmd 从另一个笔记本调用一个笔记本会返回错误,指出找不到文件路径。这是我的命令:
%run /Users/name@comp.com/notebookB $arg1=val1 $arg2=val2
Run Code Online (Sandbox Code Playgroud) runtime-error file-not-found databricks azure-databricks magic-command
azure-databricks ×10
databricks ×7
python ×4
azure ×2
apache-spark ×1
delta-lake ×1
matplotlib ×1
pycaret ×1
pyspark ×1
rest ×1
scim ×1
shap ×1
sktime ×1
terraform ×1