相关疑难解决方法(0)

lapply vs for loop - Performance R

人们常说,人们应该更喜欢lapplyfor循环.有一些例外,例如Hadley Wickham在他的Advance R书中指出.

(http://adv-r.had.co.nz/Functionals.html)(修改到位,递归等).以下是这种情况之一.

仅仅为了学习,我试图以功能形式重写感知器算法,以便对相对性能进行基准测试.来源(https://rpubs.com/FaiHas/197581).

这是代码.

# prepare input
data(iris)
irissubdf <- iris[1:100, c(1, 3, 5)]
names(irissubdf) <- c("sepal", "petal", "species")
head(irissubdf)
irissubdf$y <- 1
irissubdf[irissubdf[, 3] == "setosa", 4] <- -1
x <- irissubdf[, c(1, 2)]
y <- irissubdf[, 4]

# perceptron function with for
perceptron <- function(x, y, eta, niter) {

  # initialize weight vector
  weight <- rep(0, dim(x)[2] + 1)
  errors <- rep(0, niter)


  # loop over number of …
Run Code Online (Sandbox Code Playgroud)

performance r lapply

20
推荐指数
2
解决办法
2万
查看次数

标签 统计

lapply ×1

performance ×1

r ×1