你有一个三(或四)个浮点数的向量.总结它们的最快方法是什么?
SSE(movaps,shuffle,add,movd)总是比x87快吗?SSE4.2中的水平加法说明值得吗?移动到FPU的成本是多少,然后是faddp,faddp?什么是最快的特定指令序列?
"尝试安排事情,这样你可以一次总结四个向量"将不被接受作为答案.:-)
我得到了一个小写字符数组(最多 1.5Gb)和一个字符 c。我想使用 AVX 指令查找字符 c 出现了多少次。
unsigned long long char_count_AVX2(char * vector, int size, char c){
unsigned long long sum =0;
int i, j;
const int con=3;
__m256i ans[con];
for(i=0; i<con; i++)
ans[i]=_mm256_setzero_si256();
__m256i Zer=_mm256_setzero_si256();
__m256i C=_mm256_set1_epi8(c);
__m256i Assos=_mm256_set1_epi8(0x01);
__m256i FF=_mm256_set1_epi8(0xFF);
__m256i shield=_mm256_set1_epi8(0xFF);
__m256i temp;
int couter=0;
for(i=0; i<size; i+=32){
couter++;
shield=_mm256_xor_si256(_mm256_cmpeq_epi8(ans[0], Zer), FF);
temp=_mm256_cmpeq_epi8(C, *((__m256i*)(vector+i)));
temp=_mm256_xor_si256(temp, FF);
temp=_mm256_add_epi8(temp, Assos);
ans[0]=_mm256_add_epi8(temp, ans[0]);
for(j=1; j<con; j++){
temp=_mm256_cmpeq_epi8(ans[j-1], Zer);
shield=_mm256_and_si256(shield, temp);
temp=_mm256_xor_si256(shield, FF);
temp=_mm256_add_epi8(temp, Assos);
ans[j]=_mm256_add_epi8(temp, ans[j]);
}
}
for(j=con-1; j>=0; …Run Code Online (Sandbox Code Playgroud) 我正在评估我的项目的网络+渲染工作负载。
程序连续运行一个主循环:
while (true) {
doSomething()
drawSomething()
doSomething2()
sendSomething()
}
Run Code Online (Sandbox Code Playgroud)
主循环每秒运行 60 多次。
我想查看性能故障,每个程序需要多少时间。
我担心的是,如果我打印每个程序的每个入口和出口的时间间隔,
这会导致巨大的性能开销。
我很好奇什么是衡量性能的惯用方法。
日志打印是否足够好?