我无法理解这一点,这更随机?
rand()
Run Code Online (Sandbox Code Playgroud)
要么
rand() * rand()
Run Code Online (Sandbox Code Playgroud)
我发现它是一个真正的脑筋急转弯,你能帮助我吗?
编辑:
直观地,我知道数学答案将是它们同样随机,但我不禁想到,如果你将两者相乘的话"运行随机数算法"两次,你会创造一些比随机更随机的东西它一次.
基于Sjoerd,使用Mathematica从笛卡尔图到极坐标图的优秀解决方案和扩展,请考虑以下内容:
list = {{21, 16}, {16, 14}, {11, 11}, {11, 12},
{13, 15}, {18, 17}, {19, 11}, {17, 16}, {16, 19}}
ScreenCenter = {20, 15}
ListPolarPlot[{ArcTan[##], EuclideanDistance[##]} & @@@ (# - ScreenCenter & /@ list),
PolarAxes -> True, PolarGridLines -> Automatic, Joined -> False,
PolarTicks -> {"Degrees", Automatic},
BaseStyle -> {FontFamily -> "Arial", FontWeight -> Bold,
FontSize -> 12}, PlotStyle -> {Red, PointSize -> 0.02}]
Run Code Online (Sandbox Code Playgroud)

Module[{Countz, maxScale, angleDivisions, dAng},
Countz = Reverse[BinCounts[Flatten@Map[ArcTan[#[[1]] - ScreenCenter[[1]], #[[2]] -
ScreenCenter[[2]]] &, …Run Code Online (Sandbox Code Playgroud) 考虑:
ListPlot[Range[10],
Background -> Gray,
PlotLabel -> "I don`t want the background here !"]
Run Code Online (Sandbox Code Playgroud)

有没有办法让背景仅适用于实际的绘图区?
不在轴上,不在标签后面.那么基本上就是那个矩形{{0,0},{10,10}}?
编辑:我们可以使用PolarListPlot做同样的事情吗?
使用Mathematica在笛卡尔图上使用Sjoerd解决方案 到极坐标直方图:
dalist = {{21, 22}, {26, 13}, {32, 17}, {31, 11}, {30, 9},
{25,12}, {12, 16}, {18, 20}, {13, 23}, {19, 21},
{14, 16}, {14,22}, {18, 22}, {10, 22}, {17, 23}}
ScreenCenter = {20, 15}
ListPolarPlot[{ArcTan[##],EuclideanDistance[##]} & @@@ (# - ScreenCenter & /@ dalist),
PolarAxes -> True, PolarGridLines -> Automatic, Joined -> False,
PolarTicks -> {"Degrees", Automatic},
BaseStyle -> …Run Code Online (Sandbox Code Playgroud)