我需要在 C 中使用一个原子变量,因为这个变量是跨不同线程访问的。不想要竞争条件。
我的代码在 CentOS 上运行。我有哪些选择?
注意:对于这个问题,我不是在谈论 C 或 C++语言标准。相反,我谈论的是针对特定体系结构的 gcc 编译器实现,因为语言标准对原子性的唯一保证是使用_Atomic
C11 或更高版本中的类型或std::atomic<>
C++11 或更高版本中的类型。另请参阅我在这个问题底部的更新。
在任何体系结构上,某些数据类型可以原子方式读取和写入,而其他数据类型则需要多个时钟周期,并且可能在操作中间被中断,如果跨线程共享该数据,则会导致损坏。
在8 位单核 AVR 微控制器(例如:Arduino Uno、Nano 或 Mini 使用的 ATmega328 mcu)上,只有8 位数据类型具有原子读取和写入(使用 gcc 编译器和gnu C 或gnu C++语言)。我在不到 2 天的时间里进行了 25 小时的马拉松式调试,然后在这里写下了这个答案。另请参阅此问题的底部以获取更多信息。以及有关使用 AVR-libc 库的 gcc 编译器编译时 AVR 8 位微控制器具有自然原子写入和自然原子读取的 8 位变量的文档。
在(32 位)STM32 单核微控制器上,任何32 位或更小的数据类型绝对自动是原子的(当使用 gcc 编译器和 gnu C 或 gnu C++ 语言编译时,因为ISO C 和 C++ 不保证这一点直到 2011 年版本,_Atomic
类型为 C11 …
通过“原子访问防护”或“中断防护”强制对与 ISR 共享的易失性变量进行原子访问的标准技术,特别是在没有操作系统的情况下运行裸机、单线程协作多任务应用程序时,如下所示:
// 1. save interrupt state
// 2. disable only the interrupts necessary
// You get atomic access to volatile variables shared with ISRs here,
// since ISRs are the only other "context" or running "thread" which
// might attempt to modify a shared memory block or variable.
// 3. restore interrupt state
Run Code Online (Sandbox Code Playgroud)
另请参阅我在这里详细描述的地方,包括最佳实践(在短时间内保持中断关闭)以及如何通过我的doAtomicRead()
重复读取循环函数进行原子读取而不首先禁用中断:读取 64 位变量,即由 ISR 更新。
我之前已经记录过如何对 AVR 微控制器/Arduino 执行此操作:How do I Forceatomity in Atmel AVR mcus/Arduino? …
以下是STM32微控制器上的数据类型:http : //www.keil.com/support/man/docs/armcc/armcc_chr1359125009502.htm。
这些微控制器使用32位ARM核心处理器。
哪些数据类型具有自动原子读取和原子写入访问权限?
我很确定所有32位数据类型都可以(因为处理器是32位),而所有64位数据类型都不能(因为要读或写一个64位字至少需要2个处理器操作),但是bool
(1个字节)和uint16_t
/ int16_t
(2个字节)呢?
上下文:我正在STM32上的多个线程(在FreeRTOS中称为单核,但有多个线程或称为“任务”)之间共享变量,并且需要知道是否需要通过使用中断关闭中断来强制进行原子访问互斥锁等
更新:
参考此示例代码:
volatile bool shared_bool;
volatile uint8_t shared u8;
volatile uint16_t shared_u16;
volatile uint32_t shared_u32;
volatile uint64_t shared_u64;
volatile float shared_f; // 32-bits
volatile double shared_d; // 64-bits
// Task (thread) 1
while (1)
{
// Write to the values in this thread.
// What I write to each variable will vary. Since other threads
// are reading these values, I need to …
Run Code Online (Sandbox Code Playgroud) 我只是失去了几天,从字面上看,大约25个小时的工作,因为我试图调试我的代码而不是我不知道的简单.
事实证明,在C++中减少单字节数组的元素,在AVR上,ATmega328 8位微控制器(Arduino)不是原子操作,需要原子访问保护(即关闭中断).为什么是这样???此外,在Atmel AVR微控制器上确保原子访问变量的所有C技术是什么?
这是我所做的一个愚蠢的版本:
//global vars:
const uint8_t NUM_INPUT_PORTS = 3;
volatile uint8_t numElementsInBuf[NUM_INPUT_PORTS];
ISR(PCINT0_vect) //external pin change interrupt service routine on input port 0
{
//do stuff here
for (uint8_t i=0; i<NUM_INPUT_PORTS; i++)
numElementsInBuf[i]++;
}
loop()
{
for (uint8_t i=0; i<NUM_INPUT_PORTS; i++)
{
//do stuff here
numElementsInBuf[i]--; //<--THIS CAUSES ERRORS!!!!! THE COUNTER GETS CORRUPTED.
}
}
Run Code Online (Sandbox Code Playgroud)
这是循环的版本,没关系:
loop()
{
for (uint8_t i=0; i<NUM_INPUT_PORTS; i++)
{
//do stuff here
noInterrupts(); //globally disable interrupts
numElementsInBuf[i]--; //now it's ok...30 hrs of …
Run Code Online (Sandbox Code Playgroud) 我想从原子 uint32s 拼凑一个 uint64 原子计数器。计数器有一个写入器和多个读取器。编写器是一个信号处理程序,所以它不能阻塞。
我的想法是使用低位的代数作为读锁。读取器重试,直到整个读取过程中生成计数稳定,并且低位未设置。
以下代码在内存排序的设计和使用中是否正确?有没有更好的办法?
using namespace std;
class counter {
atomic<uint32_t> lo_{};
atomic<uint32_t> hi_{};
atomic<uint32_t> gen_{};
uint64_t read() const {
auto acquire = memory_order_acquire;
uint32_t lo, hi, gen1, gen2;
do {
gen1 = gen_.load(acquire);
lo = lo_.load(acquire);
hi = hi_.load(acquire);
gen2 = gen_.load(acquire);
} while (gen1 != gen2 || (gen1 & 1));
return (uint64_t(hi) << 32) | lo;
}
void increment() {
auto release = memory_order_release;
gen_.fetch_add(1, release);
uint32_t newlo = 1 + lo_.fetch_add(1, release);
if (newlo …
Run Code Online (Sandbox Code Playgroud)