我正在使用 Unet 模型进行语义分割 - 我有一个自定义的图像数据集及其掩码,均为 .png 格式。我查看了在线论坛并尝试了一些东西,但没有多少效果?任何有关如何解决错误或改进代码的建议都会有所帮助。
model.eval()
with torch.no_grad():
for xb, yb in val_dl:
yb_pred = model(xb.to(device))
# yb_pred = yb_pred["out"].cpu()
print(yb_pred.shape)
yb_pred = torch.argmax(yb_pred,axis = 1)
break
print(yb_pred.shape)
criteron = nn.CrossEntropyLoss(reduction = 'sum')
opt = optim.Adam(model.parameters(), lr = 3e-4)
def loss_batch(loss_func, output, target, opt = None):
loss = loss_func(output, target)
if opt is not None:
opt.zero_grad()
loss.backward()
opt.step()
return loss.item(), None
lr_scheduler = ReduceLROnPlateau(opt, mode = 'min', factor = 0.5, patience= 20, verbose = 1)
def get_lr(opt):
for …
Run Code Online (Sandbox Code Playgroud)