相关疑难解决方法(0)

在Tensorboard投影仪中可视化Gensim Word2vec嵌入

我只看到了几个问这个问题的问题,但他们都没有答案,所以我想我也可以试试.我一直在使用gensim的word2vec模型来创建一些向量.我将它们导出到文本中,并尝试将其导入到tensorflow的嵌入式投影仪的实时模型中.一个问题.它没用.它告诉我,张量的格式不正确.所以,作为初学者,我想我会问一些有更多可能解决方案经验的人.
相当于我的代码:

import gensim
corpus = [["words","in","sentence","one"],["words","in","sentence","two"]]
model = gensim.models.Word2Vec(iter = 5,size = 64)
model.build_vocab(corpus)
# save memory
vectors = model.wv
del model
vectors.save_word2vec_format("vect.txt",binary = False)
Run Code Online (Sandbox Code Playgroud)

这将创建模型,保存向量,然后在带有所有维度值的制表符分隔文件中将结果打印出来.我理解如何做我正在做的事情,我只是无法弄清楚我把它放在tensorflow中的方式有​​什么问题,因为据我所知,有关这方面的文档非常缺乏.
提交给我的一个想法是实现适当的tensorflow代码,但我不知道如何编写代码,只是导入实时演示中的文件.

编辑:我现在有一个新问题.我有载体的对象是不可迭代的,因为gensim显然决定使自己的数据结构与我正在尝试的不兼容.
好.做完了!谢谢你的帮助!

python gensim tensorflow tensorboard word-embedding

10
推荐指数
1
解决办法
3469
查看次数

标签 统计

gensim ×1

python ×1

tensorboard ×1

tensorflow ×1

word-embedding ×1