相关疑难解决方法(0)

乱序执行与投机执行

我已阅读维基百科页面关于无序执行推测性的exectution.

我不能理解的是相似之处和不同之处.在我看来,当推测执行没有确定条件的值时,它会使用无序执行.

当我阅读Meltdown和Spectre的论文并做了进一步的研究时,出现了混乱.它在陈述消融纸即熔毁是基于乱序执行,而其他一些资源,包括对维基页面sepeculative执行状态消融是基于推测执行.

我想对此有所澄清.

cpu-architecture speculative-execution

8
推荐指数
2
解决办法
2628
查看次数

出于排序的目的,原子读-修改-写是一种操作还是两种操作?

考虑一个原子读-修改-写操作,例如x.exchange(..., std::memory_order_acq_rel)。出于对其他对象的加载和存储进行排序的目的,这是否被视为:

  1. 具有获取-释放语义的单个操作?

  2. 或者,作为一个获取加载,然后是一个释放存储,附加保证其他加载和存储x将同时观察它们或两者都不观察?

如果它是 #2,那么尽管在加载之前或存储之后不能对同一线程中的其他操作进行重新排序,但仍然存在在两者之间重新排序的可能性。

作为一个具体的例子,考虑:

std::atomic<int> x, y;

void thread_A() {
    x.exchange(1, std::memory_order_acq_rel);
    y.store(1, std::memory_order_relaxed);
}

void thread_B() {
    // These two loads cannot be reordered
    int yy = y.load(std::memory_order_acquire);
    int xx = x.load(std::memory_order_acquire);
    std::cout << xx << ", " << yy << std::endl;
}
Run Code Online (Sandbox Code Playgroud)

可以thread_B输出0, 1吗?

如果x.exchange()换成了x.store(1, std::memory_order_release);那么thread_B肯定能输出0, 1。是否应该exchange()排除额外的隐式负载?

cppreference听起来像 #1 是这种情况并且0, 1被禁止:

具有此内存顺序的读-修改-写操作既是获取操作又是释放操作。当前线程中的任何内存读取或写入都不能在此存储之前或之后重新排序。

但是我在标准中找不到任何明确的内容来支持这一点。实际上,该标准对原子读-修改-写操作几乎没有说明,除了 N4860 …

c++ atomic memory-barriers stdatomic

8
推荐指数
2
解决办法
214
查看次数

为什么(或不是?)SFENCE + LFENCE相当于MFENCE?

正如我们从之前的回答中所知道的,它是否在处理器x86/x86_64中指示LFENCE?我们不能使用SFENCE而不是MFENCE顺序一致性.

这里的答案表明MFENCE= SFENCE+ LFENCE,即LFENCE没有我们不能提供顺序一致性的东西.

LFENCE 无法重新排序:

SFENCE
LFENCE
MOV reg, [addr]
Run Code Online (Sandbox Code Playgroud)

- 到 - >

MOV reg, [addr]
SFENCE
LFENCE
Run Code Online (Sandbox Code Playgroud)

例如重新排序MOV [addr], reg LFENCE- > LFENCE MOV [addr], reg机制提供- 存储缓冲区,它重新排序存储 - 负载以提高性能,并且因为LFENCE它不会阻止它.并SFENCE 禁用此机制.

什么机制禁用LFENCE无法重新排序(x86没有机制 - Invalidate-Queue)?

并且只是在理论上或者在现实中重新排序SFENCE MOV reg, [addr]- > MOV reg, [addr] SFENCE可能吗?如果可能,实际上,什么机制,它是如何工作的?

x86 assembly x86-64 memory-fences memory-barriers

5
推荐指数
3
解决办法
1091
查看次数

如何通过微体系结构实现障碍/栅栏以及获取,释放语义?

因此还有很多问题,例如https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2018.12.08a.pdf和Preshing的文章如https:/ /preshing.com/20120710/memory-barriers-are-like-source-control-operations/及其整个系列文章就不同的障碍类型提供的排序和可见性保证方面抽象地讨论了内存排序。我的问题是,如何在x86和ARM微体系结构上实现这些障碍和内存排序语义?

对于商店-商店壁垒,好像在x86上,商店缓冲区保持商店的程序顺序并将它们提交到L1D(因此使它们以相同的顺序在全局可见)。如果存储缓冲区未排序,即未按程序顺序维护它们,那么如何实现存储障碍?它只是以这样的方式“标记”存储缓冲区,即在屏障提交之前将存储提交到缓存一致性域,然后在屏障之后提交?还是存储屏障实际上刷新了存储缓冲区并暂停了所有指令,直到刷新完成?可以同时实现吗?

对于负载障碍,如何防止负载重新排序?很难相信x86将按顺序执行所有加载!我假设加载可以乱序执行,但是可以按顺序提交/退出。如果是这样,如果一个cpu在2个不同的位置执行2次加载,那么一个加载如何确保它从T100中得到一个值,而下一个加载在T100上或之后得到它?如果第一个负载未命中高速缓存并正在等待数据,而第二个负载命中并获取其值,该怎么办。当负载1获得其值时,如何确保它获得的值不是来自该负载2的值的较新商店?如果负载可以无序执行,如何检测到违反内存排序的情况?

类似地,如何实现负载存储屏障(在x86的所有负载中都是隐含的)以及如何实现存储负载屏障(例如mfence)?即dmb ld / st和dmb指令在ARM上是如何微体系结构的?每个负载和每个存储区以及mfence指令在x86上如何进行微体系结构,以确保内存排序?

x86 x86-64 cpu-architecture memory-barriers micro-architecture

5
推荐指数
1
解决办法
72
查看次数

推测执行的 CPU 分支是否可以包含访问 RAM 的操作码?

据我了解,当 CPU 推测性地执行一段代码时,它会在切换到推测性分支之前“备份”寄存器状态,以便如果预测结果错误(使分支无用)——寄存器状态将是安全恢复,而不会破坏“状态”。

所以,我的问题是:推测执行的 CPU 分支是否可以包含访问 RAM 的操作码?

我的意思是,访问 RAM 不是“原子”操作——如果数据当前不在 CPU 缓存中,那么从内存中读取一个简单的操作码可能会导致实际的 RAM 访问,这可能会变成一个非常耗时的操作,从 CPU 的角度来看。

如果在推测分支中确实允许这种访问,它是否仅用于读取操作?因为,我只能假设,如果一个分支被丢弃并执行“回滚”,根据它的大小恢复写操作可能会变得非常缓慢和棘手。而且,可以肯定的是,至少在某种程度上支持读/写操作,因为寄存器本身,在某些 CPU 上,据我所知,物理上位于 CPU 缓存上。

所以,也许更精确的表述是:推测执行的一段代码有什么限制?

cpu cpu-architecture speculative-execution

4
推荐指数
1
解决办法
518
查看次数