我通过 miniforge3 在 m1 AppleSilicon 上安装了 python 虚拟环境。
执行后conda -create py39 numpy matplotlib pandas python=3.9
我检查了一下conda list,numpy 包已经安装了。
但是当我这样做时,import numpy as np发生了导入错误。
像这样
ImportError Traceback (most recent call last)
~/miniforge3/lib/python3.9/site-packages/numpy/core/__init__.py in <module>
21 try:
---> 22 from . import multiarray
23 except ImportError as exc:
~/miniforge3/lib/python3.9/site-packages/numpy/core/multiarray.py in <module>
11
---> 12 from . import overrides
13 from . import _multiarray_umath
~/miniforge3/lib/python3.9/site-packages/numpy/core/overrides.py in <module>
6
----> 7 from numpy.core._multiarray_umath import (
8 add_docstring, implement_array_function, _get_implementing_args)
ImportError: …Run Code Online (Sandbox Code Playgroud) 我有一台配备 M1 Max 处理器的 MacBook Pro,我想在该 GPU 上运行 Tensorflow。我已按照https://developer.apple.com/metal/tensorflow-plugin中的步骤进行操作,但我不知道为什么它在我的 GPU 上运行速度较慢。我使用谷歌官方页面的MNIST 教程进行了测试)。
import tensorflow as tf
import tensorflow_datasets as tfds
DISABLE_GPU = False
if DISABLE_GPU:
try:
# Disable all GPUS
tf.config.set_visible_devices([], 'GPU')
visible_devices = tf.config.get_visible_devices()
for device in visible_devices:
assert device.device_type != 'GPU'
except:
# Invalid device or cannot modify virtual devices once initialized.
pass
print(tf.__version__)
(ds_train, ds_test), ds_info = tfds.load('mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True,
with_info=True)
def normalize_img(image, label):
return tf.cast(image, tf.float32) / 255., label …Run Code Online (Sandbox Code Playgroud)