我想绘制这个简单神经网络的输出:
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(x_test, y_test, nb_epoch=10, validation_split=0.2, shuffle=True)
model.test_on_batch(x_test, y_test)
model.metrics_names
Run Code Online (Sandbox Code Playgroud)
我绘制了准确性和失去的培训和验证:
print(history.history.keys())
# "Accuracy"
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
# "Loss"
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
Run Code Online (Sandbox Code Playgroud)
现在我想添加并绘制测试集的准确度model.test_on_batch(x_test, y_test),但是从model.metrics_names我获得用于绘制训练数据准确性的相同值'acc'plt.plot(history.history['acc']).我怎么能绘制测试集的准确性?
keras ×1