我试图做一个简单的事情,用火炬训练带有随机梯度下降(SGD)的线性模型:
import numpy as np
import torch
from torch.autograd import Variable
import pdb
def get_batch2(X,Y,M,dtype):
X,Y = X.data.numpy(), Y.data.numpy()
N = len(Y)
valid_indices = np.array( range(N) )
batch_indices = np.random.choice(valid_indices,size=M,replace=False)
batch_xs = torch.FloatTensor(X[batch_indices,:]).type(dtype)
batch_ys = torch.FloatTensor(Y[batch_indices]).type(dtype)
return Variable(batch_xs, requires_grad=False), Variable(batch_ys, requires_grad=False)
def poly_kernel_matrix( x,D ):
N = len(x)
Kern = np.zeros( (N,D+1) )
for n in range(N):
for d in range(D+1):
Kern[n,d] = x[n]**d;
return Kern
## data params
N=5 # data set size
Degree=4 # number dimensions/features
D_sgd = …Run Code Online (Sandbox Code Playgroud) I'm using pytorch to build a simple model like VGG16,and I have overloaded the function forward in my model.
I found everyone tends to use model(input) to get the output rather than model.forward(input), and I am interested in the difference between them. I try to input the same data, but the result is different. I'm confused.
I have output the layer_weight before I input data, the weight not be changed, and I know when we using model(input) it using …