我将数据保存在postgreSQL数据库中.我使用Python2.7查询这些数据并将其转换为Pandas DataFrame.但是,此数据框的最后一列中包含值的字典(或列表?).DataFrame看起来像这样:
[1] df
Station ID Pollutants
8809 {"a": "46", "b": "3", "c": "12"}
8810 {"a": "36", "b": "5", "c": "8"}
8811 {"b": "2", "c": "7"}
8812 {"c": "11"}
8813 {"a": "82", "c": "15"}
Run Code Online (Sandbox Code Playgroud)
我需要将此列拆分为单独的列,以便DataFrame如下所示:
[2] df2
Station ID a b c
8809 46 3 12
8810 36 5 8
8811 NaN 2 7
8812 NaN NaN 11
8813 82 NaN 15
Run Code Online (Sandbox Code Playgroud)
我遇到的主要问题是列表的长度不同.但是所有列表只包含相同的3个值:a,b和c.它们总是以相同的顺序出现(第一个,第二个,第三个).
以下代码用于工作并返回我想要的内容(df2).
[3] df
[4] objs = [df, pandas.DataFrame(df['Pollutant Levels'].tolist()).iloc[:, :3]]
[5] df2 = pandas.concat(objs, axis=1).drop('Pollutant Levels', axis=1) …
Run Code Online (Sandbox Code Playgroud) flatten_json
从GitHub Repo 使用:flattenpip install flatten-json
def flatten_json(nested_json: dict, exclude: list=[''], sep: str='_') -> dict:
"""
Flatten a list of nested dicts.
"""
out = dict()
def flatten(x: (list, dict, str), name: str='', exclude=exclude):
if type(x) is dict:
for a in x:
if a not in exclude:
flatten(x[a], f'{name}{a}{sep}')
elif type(x) is list:
i = 0
for a in x:
flatten(a, f'{name}{i}{sep}')
i += 1
else:
out[name[:-1]] = x
flatten(nested_json) …
Run Code Online (Sandbox Code Playgroud) pandas.DataFrame
str
、dict
或list
type。NaN
时处理值的问题。df.dropna().reset_index(drop=True)
str
必须将列中的值转换为dict
类型,使用, 。ast.literal_eval
.json_normalize
import numpy as np
import pandas as pd
from ast import literal_eval
df = pd.DataFrame({'col_str': ['{"a": "46", "b": "3", "c": "12"}', '{"b": "2", "c": "7"}', '{"c": "11"}', np.NaN]})
col_str
0 {"a": "46", "b": "3", "c": "12"}
1 {"b": "2", "c": "7"}
2 {"c": "11"}
3 NaN
type(df.iloc[0, 0])
[out]: str
df.col_str.apply(literal_eval)
Run Code Online (Sandbox Code Playgroud)
错误:
df.col_str.apply(literal_eval) results in ValueError: malformed …
Run Code Online (Sandbox Code Playgroud)