我使用了 MLflow 并使用下面的函数(来自 pydataberlin)记录了参数。
def train(alpha=0.5, l1_ratio=0.5):
# train a model with given parameters
warnings.filterwarnings("ignore")
np.random.seed(40)
# Read the wine-quality csv file (make sure you're running this from the root of MLflow!)
data_path = "data/wine-quality.csv"
train_x, train_y, test_x, test_y = load_data(data_path)
# Useful for multiple runs (only doing one run in this sample notebook)
with mlflow.start_run():
# Execute ElasticNet
lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
lr.fit(train_x, train_y)
# Evaluate Metrics
predicted_qualities = lr.predict(test_x)
(rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
# Print …Run Code Online (Sandbox Code Playgroud)