我正面临着tensorFlow的麻烦.执行以下代码
import tensorflow as tf
import input_data
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# tensorflow graph input
X = tf.placeholder('float', [None, 784]) # mnist data image of shape 28 * 28 = 784
Y = tf.placeholder('float', [None, 10]) # 0-9 digits recognition = > 10 classes
# set model weights
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# Our hypothesis
activation = tf.add(tf.matmul(X, W),b) # Softmax
# Cost function: cross …Run Code Online (Sandbox Code Playgroud) 我在数据处理中使用 tf.data.Dataset,我想用 tf.py_func 应用一些 python 代码。
顺便说一句,我发现在 tf.py_func 中,我无法返回字典。有没有办法做到这一点或解决方法?
我有如下所示的代码
def map_func(images, labels):
"""mapping python function"""
# do something
# cannot be expressed as a tensor graph
return {
'images': images,
'labels': labels,
'new_key': new_value}
def tf_py_func(images, labels):
return tf.py_func(map_func, [images, labels], [tf.uint8, tf.string], name='blah')
return dataset.map(tf_py_func)
Run Code Online (Sandbox Code Playgroud)
================================================== ==========================
已经有一段时间了,我忘记我问过这个问题了。我以另一种方式解决了它,它是如此简单,以至于我觉得我几乎是个傻瓜。问题是:
答案是:映射两次。
def map_func(images, labels):
"""mapping python function"""
# do something
# cannot be expressed as a tensor graph
return {
'images': images,
'labels': labels,
'new_key': new_value} …Run Code Online (Sandbox Code Playgroud)