PyBrain是一个python库,提供(除其他外)易于使用的人工神经网络.
我无法使用pickle或cPickle正确地序列化/反序列化PyBrain网络.
请参阅以下示例:
from pybrain.datasets import SupervisedDataSet
from pybrain.tools.shortcuts import buildNetwork
from pybrain.supervised.trainers import BackpropTrainer
import cPickle as pickle
import numpy as np
#generate some data
np.random.seed(93939393)
data = SupervisedDataSet(2, 1)
for x in xrange(10):
y = x * 3
z = x + y + 0.2 * np.random.randn()
data.addSample((x, y), (z,))
#build a network and train it
net1 = buildNetwork( data.indim, 2, data.outdim )
trainer1 = BackpropTrainer(net1, dataset=data, verbose=True)
for i in xrange(4):
trainer1.trainEpochs(1)
print '\tvalue after %d …Run Code Online (Sandbox Code Playgroud) 我试图基于给定的事实重建一个神经网络.它有3个输入,一个隐藏层和一个输出.我的问题是权重也给出了,所以我不需要训练.
我想也许我可以保存类似的结构神经网络的训练并相应地改变值.你认为这会有效吗?还有其他的想法.谢谢.
神经网络代码:
net = FeedForwardNetwork()
inp = LinearLayer(3)
h1 = SigmoidLayer(1)
outp = LinearLayer(1)
# add modules
net.addOutputModule(outp)
net.addInputModule(inp)
net.addModule(h1)
# create connections
net.addConnection(FullConnection(inp, h1))
net.addConnection(FullConnection(h1, outp))
# finish up
net.sortModules()
trainer = BackpropTrainer(net, ds)
trainer.trainUntilConvergence()
Run Code Online (Sandbox Code Playgroud)
保存培训并加载代码如何保存和恢复PyBrain培训?
# Using NetworkWriter
from pybrain.tools.shortcuts import buildNetwork
from pybrain.tools.xml.networkwriter import NetworkWriter
from pybrain.tools.xml.networkreader import NetworkReader
net = buildNetwork(2,4,1)
NetworkWriter.writeToFile(net, 'filename.xml')
net = NetworkReader.readFrom('filename.xml')
Run Code Online (Sandbox Code Playgroud)