在尝试创建神经网络并使用 Pytorch 对其进行优化时,我得到了
ValueError:优化器得到一个空的参数列表
这是代码。
import torch.nn as nn
import torch.nn.functional as F
from os.path import dirname
from os import getcwd
from os.path import realpath
from sys import argv
class NetActor(nn.Module):
def __init__(self, args, state_vector_size, action_vector_size, hidden_layer_size_list):
super(NetActor, self).__init__()
self.args = args
self.state_vector_size = state_vector_size
self.action_vector_size = action_vector_size
self.layer_sizes = hidden_layer_size_list
self.layer_sizes.append(action_vector_size)
self.nn_layers = []
self._create_net()
def _create_net(self):
prev_layer_size = self.state_vector_size
for next_layer_size in self.layer_sizes:
next_layer = nn.Linear(prev_layer_size, next_layer_size)
prev_layer_size = next_layer_size
self.nn_layers.append(next_layer)
def forward(self, torch_state):
activations = torch_state
for …Run Code Online (Sandbox Code Playgroud) python machine-learning reinforcement-learning backpropagation pytorch
我正在 PyTorch 中实现一个简单的前馈神经 newtork。但是我想知道是否有更好的方法来向网络添加灵活的层数?也许通过在循环中命名它们,但我听说那是不可能的?
目前我正在这样做
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim):
super(Net, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.hidden_dim = hidden_dim
self.layer_dim = len(hidden_dim)
self.fc1 = nn.Linear(self.input_dim, self.hidden_dim[0])
i = 1
if self.layer_dim > i:
self.fc2 = nn.Linear(self.hidden_dim[i-1], self.hidden_dim[i])
i += 1
if self.layer_dim > i:
self.fc3 = nn.Linear(self.hidden_dim[i-1], self.hidden_dim[i])
i += 1
if self.layer_dim > i:
self.fc4 = nn.Linear(self.hidden_dim[i-1], self.hidden_dim[i])
i += 1
if self.layer_dim > i: …Run Code Online (Sandbox Code Playgroud) 我创建了以下简单的线性类:
class Decoder(nn.Module):
def __init__(self, K, h=()):
super().__init__()
h = (K,)+h+(K,)
self.layers = [nn.Linear(h1,h2) for h1,h2 in zip(h, h[1:])]
def forward(self, x):
for layer in self.layers[:-1]:
x = F.relu(layer(x))
return self.layers[-1](x)
Run Code Online (Sandbox Code Playgroud)
但是,当我尝试将参数放在优化器类中时,我得到了错误ValueError: optimizer got an empty parameter list。
decoder = Decoder(4)
LR = 1e-3
opt = optim.Adam(decoder.parameters(), lr=LR)
Run Code Online (Sandbox Code Playgroud)
类定义有什么我做的明显错误吗?