许多用户都将其作为切换到Pytorch的原因,但是我还没有找到牺牲/最渴望的实用质量,速度和执行力的理由/解释。
以下是代码基准测试性能,即TF1与TF2的对比-TF1的运行速度提高了47%至276%。
我的问题是:在图形或硬件级别上,什么导致如此显着的下降?
寻找详细的答案-已经熟悉广泛的概念。相关的Git
规格:CUDA 10.0.130,cuDNN 7.4.2,Python 3.7.4,Windows 10,GTX 1070
基准测试结果:

UPDATE:禁用每下面的代码不会急于执行没有帮助。但是,该行为是不一致的:有时以图形方式运行有很大帮助,而其他时候其运行速度相对于Eager 慢。
由于TF开发人员没有出现在任何地方,因此我将自己进行调查-可以跟踪相关的Github问题的进展。
更新2:分享大量实验结果,并附有解释;应该在今天完成。
基准代码:
# use tensorflow.keras... to benchmark tf.keras; used GPU for all above benchmarks
from keras.layers import Input, Dense, LSTM, Bidirectional, Conv1D
from keras.layers import Flatten, Dropout
from keras.models import Model
from keras.optimizers import Adam
import keras.backend as K
import numpy as np
from time import time
batch_shape = (32, 400, 16) …Run Code Online (Sandbox Code Playgroud) 每次我imdb_lstm.py从Keras框架运行示例时,我得到不同的结果(测试准确性)(https://github.com/fchollet/keras/blob/master/examples/imdb_lstm.py)代码包含np.random.seed(1337)在顶部,在任何keras之前进口.它应该防止它为每次运行生成不同的数字.我错过了什么?
更新:如何重现:
UPDATE2:我在Windows 8.1上使用MinGW/msys运行它,模块版本:
theano 0.7.0
numpy 1.8.1
scipy 0.14.0c1
更新3:我把问题缩小了一点.如果我用GPU运行示例(设置theano flag device = gpu0),那么每次都会得到不同的测试精度,但是如果我在CPU上运行它,那么一切都按预期工作.我的显卡:NVIDIA GeForce GT 635)
假设我们采用np.dot两个'float32'2D数组:
res = np.dot(a, b) # see CASE 1
print(list(res[0])) # list shows more digits
Run Code Online (Sandbox Code Playgroud)
[-0.90448684, -1.1708503, 0.907136, 3.5594249, 1.1374011, -1.3826287]
Run Code Online (Sandbox Code Playgroud)
数字。除了它们可以更改:
案例1:切片a
np.random.seed(1)
a = np.random.randn(9, 6).astype('float32')
b = np.random.randn(6, 6).astype('float32')
for i in range(1, len(a)):
print(list(np.dot(a[:i], b)[0])) # full shape: (i, 6)
Run Code Online (Sandbox Code Playgroud)
[-0.9044868, -1.1708502, 0.90713596, 3.5594249, 1.1374012, -1.3826287]
[-0.90448684, -1.1708503, 0.9071359, 3.5594249, 1.1374011, -1.3826288]
[-0.90448684, -1.1708503, 0.9071359, 3.5594249, 1.1374011, -1.3826288]
[-0.90448684, -1.1708503, 0.907136, 3.5594249, 1.1374011, -1.3826287]
[-0.90448684, -1.1708503, 0.907136, 3.5594249, 1.1374011, -1.3826287] …Run Code Online (Sandbox Code Playgroud) 我遇到了严重的不兼容性问题,因为相同的代码在一个代码与另一个代码之间却发生了冲突。例如:
从Github的源代码来看,这些模块及其导入看起来完全相同,tf.keras甚至从中导入也是如此tf.python.keras。在教程中,我看到两者都经常使用。例如,下面的代码将失败tf.python.keras。
这是怎么回事?有什么区别,什么时候应该使用其中一个?
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Nadam
import numpy as np
ipt = Input(shape=(4,))
out = Dense(1, activation='sigmoid')(ipt)
model = Model(ipt, out)
model.compile(optimizer=Nadam(lr=1e-4), loss='binary_crossentropy')
X = np.random.randn(32,4)
Y = np.random.randint(0,2,(32,1))
model.train_on_batch(X,Y)
Run Code Online (Sandbox Code Playgroud)
附加信息:
tensorflow,tensorflow-gpuv2.0.0和Keras 2.3.0(通过pip),其他所有通过Anaconda 3我正在使用 tf.GradientTape() 使用 TensorFlow 2.0 训练模型,但我发现模型的准确性为95%如果我使用tf.keras.losses.BinaryCrossentropy,但75%如果我使用 则降级为tf.keras.losses.binary_crossentropy。所以我对这里相同指标的差异感到困惑?
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
def read_data():
red_wine = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv", sep=";")
white_wine = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv", sep=";")
red_wine["type"] = 1
white_wine["type"] = 0
wines = red_wine.append(white_wine)
return wines
def get_x_y(df):
x = df.iloc[:, :-1].values.astype(np.float32)
y = df.iloc[:, -1].values.astype(np.int32)
return x, y
def build_model():
inputs = layers.Input(shape=(12,))
dense1 = layers.Dense(12, activation="relu", name="dense1")(inputs)
dense2 …Run Code Online (Sandbox Code Playgroud)