我注意到使用基本操作系统Alpine与CentOS或Debian在Docker容器中安装Pandas和Numpy(它的依赖关系)需要更长的时间.我在下面创建了一个小测试来演示时差.除了Alpine更新和下载构建依赖项以安装Pandas和Numpy的几秒钟之外,为什么setup.py需要比Debian安装多70倍的时间?
有没有办法加速使用Alpine作为基本图像的安装,或者是否有另一个与Alpine相当的基本图像,最好用于像Pandas和Numpy这样的软件包?
Dockerfile.debian
FROM python:3.6.4-slim-jessie
RUN pip install pandas
Run Code Online (Sandbox Code Playgroud)
使用Pandas&Numpy构建Debian映像:
[PandasDockerTest] time docker build -t debian-pandas -f Dockerfile.debian . --no-cache
Sending build context to Docker daemon 3.072kB
Step 1/2 : FROM python:3.6.4-slim-jessie
---> 43431c5410f3
Step 2/2 : RUN pip install pandas
---> Running in 2e4c030f8051
Collecting pandas
Downloading pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl (26.2MB)
Collecting numpy>=1.9.0 (from pandas)
Downloading numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl (12.2MB)
Collecting pytz>=2011k (from pandas)
Downloading pytz-2018.3-py2.py3-none-any.whl (509kB)
Collecting python-dateutil>=2 (from pandas)
Downloading python_dateutil-2.6.1-py2.py3-none-any.whl (194kB)
Collecting six>=1.5 (from python-dateutil>=2->pandas)
Downloading six-1.11.0-py2.py3-none-any.whl
Installing collected packages: …Run Code Online (Sandbox Code Playgroud)