我最近开始pyspark
在EMR群集上运行的许多作业中遇到一堆错误。错误是
java.lang.IllegalArgumentException
at java.nio.ByteBuffer.allocate(ByteBuffer.java:334)
at org.apache.arrow.vector.ipc.message.MessageSerializer.readMessage(MessageSerializer.java:543)
at org.apache.arrow.vector.ipc.message.MessageChannelReader.readNext(MessageChannelReader.java:58)
at org.apache.arrow.vector.ipc.ArrowStreamReader.readSchema(ArrowStreamReader.java:132)
at org.apache.arrow.vector.ipc.ArrowReader.initialize(ArrowReader.java:181)
at org.apache.arrow.vector.ipc.ArrowReader.ensureInitialized(ArrowReader.java:172)
at org.apache.arrow.vector.ipc.ArrowReader.getVectorSchemaRoot(ArrowReader.java:65)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:162)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:122)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at org.apache.spark.sql.execution.python.ArrowEvalPythonExec$$anon$2.<init>(ArrowEvalPythonExec.scala:98)
at org.apache.spark.sql.execution.python.ArrowEvalPythonExec.evaluate(ArrowEvalPythonExec.scala:96)
at org.apache.spark.sql.execution.python.EvalPythonExec$$anonfun$doExecute$1.apply(EvalPythonExec.scala:127)...
Run Code Online (Sandbox Code Playgroud)
它们似乎都发生在apply
熊猫系列的功能中。我发现的唯一更改是pyarrow
在星期六(05/10/2019)更新的。测试似乎适用于0.14.1
所以我的问题是,是否有人知道这是新更新的pyarrow中的错误,还是有一些重大更改会导致pandasUDF将来难以使用?
在 Spark 数据帧上,当我执行“toPandas”时,我最终出现此错误:
pandas_df = Spark_df.toPandas()
文件“/opt/mapr/spark/spark-2.4.4/python/lib/pyspark.zip/pyspark/sql/dataframe.py”,第 2122 行,位于 toPandas 中
文件“/opt/mapr/spark/spark-2.4.4/python/lib/pyspark.zip/pyspark/sql/dataframe.py”,第 2180 行,位于 _collectAsArrow 中
ValueError:没有足够的值来解压(预期为 3,实际为 2)
Spark 版本 - 2.4.4 Pyarrow 版本 - 0.14.1
Spark 2.3.1 和 pyarrow 0.9.0 也同样适用。
有什么帮助可以用 Spark 2.4.4 解决这个问题吗?