相关疑难解决方法(0)

Pytorch ValueError:优化器得到一个空的参数列表

在尝试创建神经网络并使用 Pytorch 对其进行优化时,我得到了

ValueError:优化器得到一个空的参数列表

这是代码。

import torch.nn as nn
import torch.nn.functional as F
from os.path import dirname
from os import getcwd
from os.path import realpath
from sys import argv

class NetActor(nn.Module):

    def __init__(self, args, state_vector_size, action_vector_size, hidden_layer_size_list):
        super(NetActor, self).__init__()
        self.args = args

        self.state_vector_size = state_vector_size
        self.action_vector_size = action_vector_size
        self.layer_sizes = hidden_layer_size_list
        self.layer_sizes.append(action_vector_size)

        self.nn_layers = []
        self._create_net()

    def _create_net(self):
        prev_layer_size = self.state_vector_size
        for next_layer_size in self.layer_sizes:
            next_layer = nn.Linear(prev_layer_size, next_layer_size)
            prev_layer_size = next_layer_size
            self.nn_layers.append(next_layer)

    def forward(self, torch_state):
        activations = torch_state
        for …
Run Code Online (Sandbox Code Playgroud)

python machine-learning reinforcement-learning backpropagation pytorch

10
推荐指数
1
解决办法
9048
查看次数

如何使用pytorch构建多任务DNN,例如超过100个任务?

下面是使用 pytorch 为两个回归任务构建 DNN 的示例代码。该forward函数返回两个输出 (x1, x2)。用于大量回归/分类任务的网络怎么样?例如,100 或 1000 个输出。对所有输出(例如,x1、x2、...、x100)进行硬编码绝对不是一个好主意。有一个简单的方法可以做到这一点吗?谢谢。

import torch
from torch import nn
import torch.nn.functional as F

class mynet(nn.Module):
    def __init__(self):
        super(mynet, self).__init__()
        self.lin1 = nn.Linear(5, 10)
        self.lin2 = nn.Linear(10, 3)
        self.lin3 = nn.Linear(10, 4)

    def forward(self, x):
        x = self.lin1(x)
        x1 = self.lin2(x)
        x2 = self.lin3(x)
        return x1, x2

if __name__ == '__main__':
    x = torch.randn(1000, 5)
    y1 = torch.randn(1000, 3)
    y2 = torch.randn(1000,  4)
    model = mynet()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-4)
    for …
Run Code Online (Sandbox Code Playgroud)

regression classification deep-learning pytorch

4
推荐指数
1
解决办法
1732
查看次数