相关疑难解决方法(0)

Keras输入说明:input_shape,units,batch_size,dim等

对于任何Keras层(Layer类),可有人解释如何理解之间的区别input_shape,units,dim,等?

例如,doc说明了units指定图层的输出形状.

在神经网络的图像下面hidden layer1有4个单位.这是否直接转换为对象的units属性Layer?或者units在Keras中,隐藏层中每个权重的形状是否等于单位数?

简而言之,如何理解/可视化模型的属性 - 特别是图层 - 下面的图像? 在此输入图像描述

neural-network deep-learning keras keras-layer tensor

191
推荐指数
2
解决办法
9万
查看次数