我有一张客户表(coper)和资产分配(资产)
A = [[1,2],[3,4],[5,6]]
idx = ['coper1','coper2','coper3']
cols = ['asset1','asset2']
df = pd.DataFrame(A,index = idx, columns = cols)
Run Code Online (Sandbox Code Playgroud)
所以我的数据看起来像
asset1 asset2
coper1 1 2
coper2 3 4
coper3 5 6
Run Code Online (Sandbox Code Playgroud)
我想通过一个线性优化运行它们(我有constraints- somtehing像sum of all of asset_i <= amount_on_hand_i和sum of coper_j = price_j)
所以我必须把这个2D矩阵变成一维矢量.融化容易
df2 = pd.melt(df,value_vars=['asset1','asset2'])
Run Code Online (Sandbox Code Playgroud)
但是现在,当我尝试解开它时,我得到一个带有大量空白的6排数组!
df2.pivot(columns = 'variable', values = 'value')
variable asset1 asset2
0 1.0 NaN
1 3.0 NaN
2 5.0 NaN
3 NaN 2.0
4 NaN 4.0
5 NaN 6.0
Run Code Online (Sandbox Code Playgroud)
有没有办法在使用熔化时保留索引的'coper'部分?