相关疑难解决方法(0)

如何在Spark SQL中的多个列上进行数据透视?

我需要在pyspark数据帧中转动多个列.示例数据框,

 >>> d = [(100,1,23,10),(100,2,45,11),(100,3,67,12),(100,4,78,13),(101,1,23,10),(101,2,45,13),(101,3,67,14),(101,4,78,15),(102,1,23,10),(102,2,45,11),(102,3,67,16),(102,4,78,18)]
>>> mydf = spark.createDataFrame(d,['id','day','price','units'])
>>> mydf.show()
+---+---+-----+-----+
| id|day|price|units|
+---+---+-----+-----+
|100|  1|   23|   10|
|100|  2|   45|   11|
|100|  3|   67|   12|
|100|  4|   78|   13|
|101|  1|   23|   10|
|101|  2|   45|   13|
|101|  3|   67|   14|
|101|  4|   78|   15|
|102|  1|   23|   10|
|102|  2|   45|   11|
|102|  3|   67|   16|
|102|  4|   78|   18|
+---+---+-----+-----+
Run Code Online (Sandbox Code Playgroud)

现在,如果我需要根据日期将每个id的价格列放到一行,那么我可以使用pivot方法,

>>> pvtdf = mydf.withColumn('combcol',F.concat(F.lit('price_'),mydf['day'])).groupby('id').pivot('combcol').agg(F.first('price'))
>>> pvtdf.show()
+---+-------+-------+-------+-------+
| id|price_1|price_2|price_3|price_4|
+---+-------+-------+-------+-------+
|100|     23|     45|     67|     78| …
Run Code Online (Sandbox Code Playgroud)

python apache-spark pyspark pyspark-sql

15
推荐指数
2
解决办法
5796
查看次数

标签 统计

apache-spark ×1

pyspark ×1

pyspark-sql ×1

python ×1