我试图冻结免费训练的VGG16的图层(下面的'conv_base'),并在它们上面添加新图层以进行特征提取.我希望在(ret1)/之后(ret2)拟合模型之前从'conv_base'获得相同的预测结果,但事实并非如此.这是检查体重冻结的错误方法吗?
conv_base = applications.VGG16(weights='imagenet', include_top=False, input_shape=[150, 150, 3])
conv_base.trainable = False
Run Code Online (Sandbox Code Playgroud)
ret1 = conv_base.predict(np.ones([1, 150, 150, 3]))
Run Code Online (Sandbox Code Playgroud)
model = models.Sequential()
model .add(conv_base)
model .add(layers.Flatten())
model .add(layers.Dense(10, activation='relu'))
model .add(layers.Dense(1, activation='sigmoid'))
m.compile('rmsprop', 'binary_crossentropy', ['accuracy'])
Run Code Online (Sandbox Code Playgroud)
m.fit_generator(train_generator, 100, validation_data=validation_generator, validation_steps=50)
Run Code Online (Sandbox Code Playgroud)
ret2 = conv_base.predict(np.ones([1, 150, 150, 3]))
Run Code Online (Sandbox Code Playgroud)
np.equal(ret1, ret2)
Run Code Online (Sandbox Code Playgroud)