我正在尝试从numpy数组创建tfrecord格式的数据集.我想存储2d和3d坐标.
2d坐标是float64类型的numpy数组(2,10)3d坐标是float64类型的numpy数组(3,10)
这是我的代码:
def _floats_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
train_filename = 'train.tfrecords' # address to save the TFRecords file
writer = tf.python_io.TFRecordWriter(train_filename)
for c in range(0,1000):
#get 2d and 3d coordinates and save in c2d and c3d
feature = {'train/coord2d': _floats_feature(c2d),
'train/coord3d': _floats_feature(c3d)}
sample = tf.train.Example(features=tf.train.Features(feature=feature))
writer.write(sample.SerializeToString())
writer.close()
Run Code Online (Sandbox Code Playgroud)
当我运行这个我得到错误:
feature = {'train/coord2d': _floats_feature(c2d),
File "genData.py", line 19, in _floats_feature
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\google\protobuf\internal\python_message.py", line 510, in init
copy.extend(field_value)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\google\protobuf\internal\containers.py", line 275, in extend
new_values = [self._type_checker.CheckValue(elem) for elem in elem_seq_iter]
File …Run Code Online (Sandbox Code Playgroud)