我使用 Keras Subclassing API 创建了一个可以正确运行的模型。也model.summary()可以正常工作。当尝试使用tf.keras.utils.plot_model()可视化模型的架构时,它只会输出以下图像:
这几乎感觉像是 Keras 开发团队的一个笑话。这是完整的架构:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from sklearn.datasets import load_diabetes
import tensorflow as tf
tf.keras.backend.set_floatx('float64')
from tensorflow.keras.layers import Dense, GaussianDropout, GRU, Concatenate, Reshape
from tensorflow.keras.models import Model
X, y = load_diabetes(return_X_y=True)
data = tf.data.Dataset.from_tensor_slices((X, y)).\
shuffle(len(X)).\
map(lambda x, y: (tf.divide(x, tf.reduce_max(x)), y))
training = data.take(400).batch(8)
testing = data.skip(400).map(lambda x, y: (tf.expand_dims(x, 0), y))
class NeuralNetwork(Model):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.dense1 = Dense(16, input_shape=(10,), activation='relu', name='Dense1')
self.dense2 = Dense(32, activation='relu', …Run Code Online (Sandbox Code Playgroud)