我正在尝试使用Python中的scikit-learn设计一个简单的决策树(我在Windows操作系统上使用Anaconda的Ipython Notebook和Python 2.7.3),并将其可视化如下:
from pandas import read_csv, DataFrame
from sklearn import tree
from os import system
data = read_csv('D:/training.csv')
Y = data.Y
X = data.ix[:,"X0":"X33"]
dtree = tree.DecisionTreeClassifier(criterion = "entropy")
dtree = dtree.fit(X, Y)
dotfile = open("D:/dtree2.dot", 'w')
dotfile = tree.export_graphviz(dtree, out_file = dotfile, feature_names = X.columns)
dotfile.close()
system("dot -Tpng D:.dot -o D:/dtree2.png")
Run Code Online (Sandbox Code Playgroud)
但是,我收到以下错误:
AttributeError: 'NoneType' object has no attribute 'close'
Run Code Online (Sandbox Code Playgroud)
我使用以下博客文章作为参考:Blogpost链接
以下stackoverflow问题对我来说似乎也不起作用:问题
有人可以帮助我如何在scikit-learn中可视化决策树吗?
我想要在 scikit-learn 中的决策树(DecisionTreeClassifier)中从根节点到给定节点(我提供)的决策路径(即规则集)。clf.decision_path指定样本经过的节点,这可能有助于获取样本遵循的规则集,但是如何将规则集设置到树中的特定节点?
扩展先前的问题: 更改使用导出 graphviz 创建的决策树图的颜色
我将如何根据主导类(鸢尾花的种类)而不是二元区分为树的节点着色?这应该需要 iris.target_names(描述类的字符串)和 iris.target(类)的组合。
import pydotplus
from sklearn.datasets import load_iris
from sklearn import tree
import collections
clf = tree.DecisionTreeClassifier(random_state=42)
iris = load_iris()
clf = clf.fit(iris.data, iris.target)
dot_data = tree.export_graphviz(clf, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
nodes = graph.get_node_list()
edges = graph.get_edge_list()
colors = ('brown', 'forestgreen')
edges = collections.defaultdict(list)
for edge in graph.get_edge_list():
edges[edge.get_source()].append(int(edge.get_destination()))
for edge in edges:
edges[edge].sort()
for i in range(2):
dest = graph.get_node(str(edges[edge][i]))[0]
dest.set_fillcolor(colors[i])
graph.write_png('tree.png')
Run Code Online (Sandbox Code Playgroud) decision-tree graph-visualization python-3.x pydot scikit-learn