相关疑难解决方法(0)

如何在 Keras 中的 RNN 时间序列预测中包含未来值

我目前有一个用于时间序列预测的 RNN 模型。它使用最后 96 个时间步长的 3 个输入特征“值”、“温度”和“一天中的小时”来预测特征“值”的接下来 96 个时间步长。

在这里您可以看到它的架构:

当前预测

这里有当前的代码:

#Import modules
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from tensorflow import keras

# Define the parameters of the RNN and the training
epochs = 1
batch_size = 50
steps_backwards = 96
steps_forward = 96
split_fraction_trainingData = 0.70
split_fraction_validatinData = 0.90
randomSeedNumber = 50

#Read dataset
df = pd.read_csv('C:/Users/Desktop/TestData.csv', sep=';', header=0, low_memory=False, infer_datetime_format=True, parse_dates={'datetime':[0]}, index_col=['datetime'])

# …
Run Code Online (Sandbox Code Playgroud)

python time-series keras tensorflow recurrent-neural-network

3
推荐指数
1
解决办法
3291
查看次数