相关疑难解决方法(0)

为什么我必须明确告诉Spark要缓存什么?

在Spark中,每次我们对RDD执行任何操作时,都会重新计算RDD.因此,如果我们知道RDD将被重用,我们应该明确地缓存RDD.

让我们说,Spark决定懒惰地缓存所有RDD并使用LRU自动将最相关的RDD保存在内存中(这是大多数缓存以任何方式工作的方式).这对开发人员有很大的帮助,因为他不必考虑缓存并专注于应用程序.此外,我不知道它如何对性能产生负面影响,因为很难跟踪程序内部使用变量(RDD)的次数,大多数程序员将决定以任何方式缓存大多数RDD.

缓存通常会自动发生.以OS /平台或框架或工具为例.但是由于分布式计算中缓存的复杂性,我可能会忽略为什么缓存不能自动或性能影响.

所以我无法理解,为什么我必须显式缓存为,

  1. 它看起来很难看
  2. 它很容易被遗漏
  3. 它可以很容易地使用过度/不足

caching apache-spark

5
推荐指数
1
解决办法
1402
查看次数

在 Spark 中加入多个表的有效方法 - 设备上没有剩余空间

这里也有人问类似的问题,但它没有正确解决我的问题。我有近 100 个数据帧,每个数据帧至少有200,000行,我需要通过full基于列进行连接来加入它们ID,从而创建一个带有列的数据帧 - ID, Col1, Col2,Col3,Col4, Col5..., Col102

只是为了说明,我的 DataFrames 的结构 -

df1 =                          df2 =            df3 =          .....  df100 = 
+----+------+------+------+    +----+------+    +----+------+         +----+------+ 
|  ID|  Col1|  Col2|  Col3|    |  ID|  Col4|    |  ID|  Col5|         |  ID|Col102|
+----+------+-------------+    +----+------+    +----+------+         +----+------+
| 501|  25.1|  34.9| 436.9|    | 501| 22.33|    | 503| 22.33|         | 501|  78,1|
| 502|  12.2|3225.9|  46.2|    | 502| 645.1|    | 505| 645.1|         | 502|  54.9| …
Run Code Online (Sandbox Code Playgroud)

hadoop-partitioning apache-spark pyspark

5
推荐指数
1
解决办法
7071
查看次数

高效的pyspark加入

我已经阅读了很多有关如何在pyspark中进行有效联接的内容。我发现实现高效联接的方法基本上是:

  • 如果可以,请使用广播加入。(我通常不能,因为数据帧太大)
  • 考虑使用非常大的群集。(我宁愿不是因为$$$)。
  • 使用相同的分区程序

最后一个是我想尝试的,但是我找不到在pyspark中实现它的方法。我试过了:

df.repartition(numberOfPartitions,['parition_col1','partition_col2'])
Run Code Online (Sandbox Code Playgroud)

但这无济于事,直到我停止它仍需要花费很长时间,因为在最后的几项工作中卡住了火花。

因此,如何在pyspark中使用相同的分区程序并加快连接速度,甚至摆脱永远需要的时间?我需要使用哪个代码?

PD:即使在stackoverflow上,我也查看了其他文章,但是我仍然看不到代码。

apache-spark pyspark

3
推荐指数
1
解决办法
1419
查看次数