我正在尝试在OpenCV-Python(cv2)中实现"数字识别OCR".它仅用于学习目的.我想在OpenCV中学习KNearest和SVM功能.
我有每个数字的100个样本(即图像).我想和他们一起训练.
letter_recog.pyOpenCV示例附带了一个示例.但我仍然无法弄清楚如何使用它.我不明白什么是样本,响应等.另外,它首先加载一个txt文件,我首先不明白.
稍后搜索一下,我可以在cpp示例中找到一个letter_recognition.data.我使用它并在letter_recog.py模型中为cv2.KNearest创建了一个代码(仅用于测试):
import numpy as np
import cv2
fn = 'letter-recognition.data'
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
samples, responses = a[:,1:], a[:,0]
model = cv2.KNearest()
retval = model.train(samples,responses)
retval, results, neigh_resp, dists = model.find_nearest(samples, k = 10)
print results.ravel()
Run Code Online (Sandbox Code Playgroud)
它给了我一个20000的数组,我不明白它是什么.
问题:
1)letter_recognition.data文件是什么?如何从我自己的数据集构建该文件?
2)什么results.reval()表示?
3)我们如何使用letter_recognition.data文件(KNearest或SVM)编写简单的数字识别工具?
我正在关注这个问题:
从左到右和从上到下排序轮廓.但是,我的轮廓是使用这个(OpenCV 3)找到的:
im2, contours, hierarchy = cv2.findContours(threshold,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
Run Code Online (Sandbox Code Playgroud)
它们的格式如下:
array([[[ 1, 1]],
[[ 1, 36]],
[[63, 36]],
[[64, 35]],
[[88, 35]],
[[89, 34]],
[[94, 34]],
[[94, 1]]], dtype=int32)]
Run Code Online (Sandbox Code Playgroud)
当我运行代码
max_width = max(contours, key=lambda r: r[0] + r[2])[0]
max_height = max(contours, key=lambda r: r[3])[3]
nearest = max_height * 1.4
contours.sort(key=lambda r: (int(nearest * round(float(r[1])/nearest)) * max_width + r[0]))
Run Code Online (Sandbox Code Playgroud)
我收到了错误
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
Run Code Online (Sandbox Code Playgroud)
所以我改成了这个:
max_width = …Run Code Online (Sandbox Code Playgroud) 为了提取颜色,我们有这个功能
# define range of blue color in HSV
lower_blue = np.array([110,50,50])
upper_blue = np.array([130,255,255])
# Threshold the HSV image to get only blue colors
mask = cv2.inRange(hsv, lower_blue, upper_blue)
Run Code Online (Sandbox Code Playgroud)
我们如何实际可视化我在hsv空间定义的范围(lower_blue,upper_blue)?另外我如何实际绘制hsv颜色,但它不起作用......?我有这个代码:
upper = np.array([60, 255, 255])
upper = cv2.cvtColor(upper, cv2.COLOR_HSV2BGR)
upper = totuple(upper/-255)
print(upper)
plt.imshow([[upper]])
Run Code Online (Sandbox Code Playgroud)