我正在使用keras和tensorflow 1.4。
我想明确指定两层之间连接的神经元。因此,每当第一层中的神经元i与第二层中的神经元j连接且在其他位置为零时,我就有一个矩阵A。
我的第一个尝试是创建一个带有内核的自定义层,该内核的大小与A相同,其中包含不可训练的零,其中A包含零,可训练的权重,其中A包含一个零。这样,所需的输出将是一个简单的点积。不幸的是,我没有设法弄清楚如何实现部分可训练和部分不可训练的内核。
有什么建议么?
(用很多神经元通过手工连接建立功能模型可能是一种解决方法,但是某种程度上是“丑陋”的解决方案)