相关疑难解决方法(0)

重命名PySpark Dataframe中的透视和聚合列

具有如下数据框:

from pyspark.sql.functions import avg, first

rdd = sc.parallelize(
    [
        (0, "A", 223,"201603", "PORT"), 
        (0, "A", 22,"201602", "PORT"), 
        (0, "A", 422,"201601", "DOCK"), 
        (1,"B", 3213,"201602", "DOCK"), 
        (1,"B", 3213,"201601", "PORT"), 
        (2,"C", 2321,"201601", "DOCK")
    ]
)
df_data = sqlContext.createDataFrame(rdd, ["id","type", "cost", "date", "ship"])

df_data.show()
Run Code Online (Sandbox Code Playgroud)

我为此做一个重点

df_data.groupby(df_data.id, df_data.type).pivot("date").agg(avg("cost"), first("ship")).show()

+---+----+----------------+--------------------+----------------+--------------------+----------------+--------------------+
| id|type|201601_avg(cost)|201601_first(ship)()|201602_avg(cost)|201602_first(ship)()|201603_avg(cost)|201603_first(ship)()|
+---+----+----------------+--------------------+----------------+--------------------+----------------+--------------------+
|  2|   C|          2321.0|                DOCK|            null|                null|            null|                null|
|  0|   A|           422.0|                DOCK|            22.0|                PORT|           223.0|                PORT|
|  1|   B|          3213.0|                PORT|          3213.0|                DOCK|            null|                null|
+---+----+----------------+--------------------+----------------+--------------------+----------------+--------------------+
Run Code Online (Sandbox Code Playgroud)

但是我为这些列得到了这些非常复杂的名称。alias通常适用于聚合,但是由于 …

python apache-spark apache-spark-sql pyspark

4
推荐指数
3
解决办法
4491
查看次数

标签 统计

apache-spark ×1

apache-spark-sql ×1

pyspark ×1

python ×1