class Model:
def __init__(self):
self.model = Sequential()
self.model.add(Conv2D(24, 3, 2, 'valid', input_shape=(75, 75, 3)))
self.model.add(BatchNormalization())
self.model.add(Conv2D(24, 3, 2))
self.model.add(BatchNormalization())
self.model.add(Conv2D(24, 3, 2))
self.model.add(BatchNormalization())
self.model.add(Conv2D(24, 3, 2))
self.model.add(BatchNormalization())
self.model.add(Flatten())
def get_model(self):
return self.model
class CNN_MLP:
def __init__(self):
model = Model()
self.model = model.get_model()
self.optimizer = optimizers
def get_model(self):
self.model = self.extend(self.model)
return self.model
def extend(self, model):
self.model = model
self.sequence = Input(shape=(75, 75, 3), name='Sequence')
self.features = Input(shape=(11, ), name='Features')
conv_sequence = self.model(self.sequence)
merged_features = concatenate([conv_sequence, self.features])
fc1 = Dense(256, activation='relu')(merged_features) …
Run Code Online (Sandbox Code Playgroud)