我正在尝试将路径添加到我的路径中,因此它始终位于我的Linux路径中.我试过了:
export PATH=$PATH:/path/to/dir
Run Code Online (Sandbox Code Playgroud)
这是有效的,但是每次我退出终端并启动一个新的终端实例时,这个路径都会丢失,我需要再次运行export命令.
我怎么能这样做才能永久设置?
编译修改后的caffe版本时遇到了这个错误.
OpenCV static library was compiled with CUDA 7.5 support. Please, use the same version or rebuild OpenCV with CUDA 8.0
我有一些旧的代码可能与CUDA8.0不兼容,所以我想为这个错误更改我的cuda版本.
我像这样修改了〜/ .bash_profile
# export PYTHONPATH=$PYTHONPATH:/usr/local/cuda-8.0/lib64/
# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64
export PYTHONPATH=$PYTHONPATH:/usr/local/cuda-7.5/targets/x86_64-linux/lib/
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-7.5/targets/x86_64-linux/lib/
Run Code Online (Sandbox Code Playgroud)
但它没有用.还是一样的错误.我该怎么办?谢谢.
我发现这是一个受欢迎的问题,但我仍然找不到解决方案。
我正在尝试运行一个简单的 repo Here,它使用PyTorch. 虽然我刚刚从 pytorch.org ( 1.2.0)将我的 Pytorch 升级到最新的 CUDA 版本,但它仍然抛出相同的错误。我在 Windows 10 上使用 conda 和 python 3.7。
raise AssertionError("Torch not compiled with CUDA enabled")
AssertionError: Torch not compiled with CUDA enabled
Run Code Online (Sandbox Code Playgroud)
如何解决问题?
这是我的conda list:
# Name Version Build Channel
_ipyw_jlab_nb_ext_conf 0.1.0 py37_0 anaconda
_pytorch_select 1.1.0 cpu anaconda
_tflow_select 2.3.0 mkl anaconda
absl-py 0.7.1 pypi_0 pypi
alabaster 0.7.12 py37_0 anaconda
anaconda 2019.07 py37_0 anaconda
anaconda-client 1.7.2 py37_0 anaconda
anaconda-navigator 1.9.7 py37_0 anaconda
anaconda-project …Run Code Online (Sandbox Code Playgroud) RuntimeError Traceback (most recent call last)
Input In [46], in <cell line: 1>()
----> 1 train_results = trainer.train()
2 wandb.finish()
File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1543, in Trainer.train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)
1538 self.model_wrapped = self.model
1540 inner_training_loop = find_executable_batch_size(
1541 self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size
1542 )
-> 1543 return inner_training_loop(
1544 args=args,
1545 resume_from_checkpoint=resume_from_checkpoint,
1546 trial=trial,
1547 ignore_keys_for_eval=ignore_keys_for_eval,
1548 )
File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1791, in Trainer._inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)
1789 tr_loss_step = self.training_step(model, inputs)
1790 else:
-> 1791 tr_loss_step = self.training_step(model, inputs)
1793 if …Run Code Online (Sandbox Code Playgroud) 我有 Ubuntu 18.04。Python 3.7.3,Tensorflow 2.0.0
这是我的 cuda 版本:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Nov__3_21:07:56_CDT_2017
Cuda compilation tools, release 9.1, V9.1.85
Run Code Online (Sandbox Code Playgroud)
我的电脑是 UX430UQ,显卡是 GeForce 940MX
这是 nvidia-smi 的输出:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.87.01 Driver Version: 418.87.01 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce 940MX On | 00000000:01:00.0 Off | N/A …Run Code Online (Sandbox Code Playgroud) 我尝试卸载 CUDA 10 并安装 9.2。现在nvcc -V返回 9.2,但显示nvidia-smiCUDA 10.0。
知道为什么会发生这种情况或如何解决吗?在我的系统上找不到与 10.0 相关的任何其他内容。
编辑:添加了截图作为对 nvidia 员工的回复,显示nvidia-smi清楚地说明了 CUDA 版本..
我安装了cuda 7,但是当我点击nvcc --version时,它打印出6.5.我想在GTX 960卡上安装Theano库,但它需要nvcc 7.0.香港专业教育学院尝试重新安装cuda,但它没有更新nvcc.当我运行apt-get install nvidida-cuda-toolkit时,它只运行6.5.
如何将nvcc更新到7.0版?
我的当前:
nvidia-smi
Wed Aug 4 01:40:39 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.79 Driver Version: 410.79 CUDA Version: 10.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... On | 00000000:00:0C.0 Off | 0 |
| N/A 34C P0 37W / 300W | 0MiB / 16130MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla V100-SXM2... On | 00000000:00:0D.0 Off | 0 | …Run Code Online (Sandbox Code Playgroud)