我想知道是否有办法从scikit学习包中实现不同的得分函数,如下所示:
from sklearn.metrics import confusion_matrix
confusion_matrix(y_true, y_pred)
Run Code Online (Sandbox Code Playgroud)
进入张量流模型以获得不同的分数.
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
init = tf.initialize_all_variables()
sess.run(init)
for epoch in xrange(1):
avg_cost = 0.
total_batch = len(train_arrays) / batch_size
for batch in range(total_batch):
train_step.run(feed_dict = {x: train_arrays, y: train_labels})
avg_cost += sess.run(cost, feed_dict={x: train_arrays, y: train_labels})/total_batch
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
print "Optimization Finished!"
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print "Accuracy:", batch, accuracy.eval({x: test_arrays, y: …Run Code Online (Sandbox Code Playgroud) 我正在运行 2000 个时代的多类模型(总共 40 个类)。该模型运行良好,直到 828 epoch 但在 829 epoch 它给了我一个 InvalidArgumentError (见下面的截图)
下面是我用来构建模型的代码。
n_cats = 40
input_bow = tf.keras.Input(shape=(40), name="bow")
hidden_1 = tf.keras.layers.Dense(200, activation="relu")(input_bow)
hidden_2 = tf.keras.layers.Dense(100, activation="relu")(hidden_1)
hidden_3 = tf.keras.layers.Dense(80, activation="relu")(hidden_2)
hidden_4 = tf.keras.layers.Dense(70, activation="relu")(hidden_3)
output = tf.keras.layers.Dense(n_cats, activation="sigmoid")(hidden_4)
model = tf.keras.Model(inputs=[input_bow], outputs=output)
METRICS = [
tf.keras.metrics.Accuracy(name="Accuracy"),
tf.keras.metrics.Precision(name="precision"),
tf.keras.metrics.Recall(name="recall"),
tf.keras.metrics.AUC(name="auc"),
tf.keras.metrics.BinaryAccuracy(name="binaryAcc")
]
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(
"my_keras_model.h5", save_best_only=True)
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate=1e-2,
decay_steps=10000,
decay_rate=0.9)
adam_optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
model.compile(loss="categorical_crossentropy",
optimizer="adam", metrics=METRICS)
training_history = model.fit(
(bow_train),
indus_cat_train,
epochs=2000,
batch_size=128,
callbacks=[checkpoint_cb],
validation_data=(bow_test, indus_cat_test)) …Run Code Online (Sandbox Code Playgroud)