相关疑难解决方法(0)

如何在tensorflow中获取当前可用的GPU?

我有计划使用分布式TensorFlow,我看到TensorFlow可以使用GPU进行培训和测试.在群集环境中,每台计算机可能有0个或1个或更多GPU,我想在尽可能多的计算机上运行我的TensorFlow图形到GPU.

我发现在运行tf.Session()TensorFlow时会在日志消息中提供有关GPU的信息,如下所示:

I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:838] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:01:00.0)
Run Code Online (Sandbox Code Playgroud)

我的问题是如何从TensorFlow获取有关当前可用GPU的信息?我可以从日志中获取加载的GPU信息,但我希望以更复杂的程序化方式完成.我也可以故意使用CUDA_VISIBLE_DEVICES环境变量限制GPU,所以我不想知道从OS内核获取GPU信息的方法.

简而言之,如果机器中有两个可用的GPU ,我希望这样的函数tf.get_available_gpus()将返回['/gpu:0', '/gpu:1'].我该如何实现呢?

python gpu tensorflow

131
推荐指数
9
解决办法
16万
查看次数

标签 统计

gpu ×1

python ×1

tensorflow ×1