相关疑难解决方法(0)

pytorch错误:CrossEntropyLoss()中不支持多目标

我正在使用加速度数据来预测某些活动.但我在损失计算上遇到了问题.我正在使用CrossEntropyLoss它.

如下所示使用数据我使用每行的前4个数据来预测索引,就像每行的最后一个一样.

1 84 84 81 4
81 85 85 80 1
81 82 84 80 1
1 85 84 2 0
81 85 82 80 1
81 82 84 80 1
81 25 84 80 5
Run Code Online (Sandbox Code Playgroud)

错误消息如下所示.

minoh@minoh-VirtualBox:~/cow$ python lec5.py
Traceback (most recent call last):
  File "lec5.py", line 97, in <module>
    train(epoch)
  File "lec5.py", line 74, in train
    loss = criterion(y_pred, labels)
  File "/home/minoh/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 357, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/minoh/anaconda3/lib/python3.6/site-packages/torch/nn/modules/loss.py", line 679, in …
Run Code Online (Sandbox Code Playgroud)

python machine-learning neural-network python-3.x pytorch

6
推荐指数
1
解决办法
7689
查看次数

RuntimeError:尚未为torch.cuda.LongTensor类型实现_thnn_mse_loss_forward

我正在使用PyTorch,但出现错误!我的错误代码如下:


for train_data in trainloader:
    example_count += 1
    if example_count == 100:
        break
    optimer.zero_grad()
    image, label = train_data
    image = image.cuda()
    label = label.cuda()
    out = model(image)
    _, out = torch.max(out, 1)
    # print(out.cpu().data.numpy())
    # print(label.cpu().data.numpy())
    # out = torch.zeros(4, 10).scatter_(1, out.cpu(), 1).cuda()
    # label= torch.zeros(4, 10).scatter_(1, label.cpu(), 1).cuda()
    l = loss(out, label)
    l.bakeward()
    optimer.setp()
    j += 1
    count += label.size(0)
    acc += (out == label).sum().item()
    if j % 1000 == 0:
        print(j + ' step:curent accurity is %f' % …
Run Code Online (Sandbox Code Playgroud)

python machine-learning image-processing computer-vision pytorch

5
推荐指数
1
解决办法
2318
查看次数