我需要概述一下在高性能数字代码中使用Cython可以获得的性能.我感兴趣的一件事是找出优化的C编译器是否可以对Cython生成的代码进行矢量化.所以我决定编写以下小例子:
import numpy as np
cimport numpy as np
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef int f(np.ndarray[int, ndim = 1] f):
cdef int array_length = f.shape[0]
cdef int sum = 0
cdef int k
for k in range(array_length):
sum += f[k]
return sum
Run Code Online (Sandbox Code Playgroud)
我知道有Numpy函数可以完成这项工作,但我希望有一个简单的代码,以便了解Cython的可能性.事实证明,生成的代码:
from distutils.core import setup
from Cython.Build import cythonize
setup(ext_modules = cythonize("sum.pyx"))
Run Code Online (Sandbox Code Playgroud)
并呼吁:
python setup.py build_ext --inplace
Run Code Online (Sandbox Code Playgroud)
为循环生成一个看起来像这样的C代码:
for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_1; __pyx_t_2 += 1) {
__pyx_v_sum = __pyx_v_sum + (*(int *)((char *)
__pyx_pybuffernd_f.rcbuffer->pybuffer.buf + …Run Code Online (Sandbox Code Playgroud)