我有一只DataFrame熊猫:
import pandas as pd
inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
df = pd.DataFrame(inp)
print df
Run Code Online (Sandbox Code Playgroud)
输出:
c1 c2
0 10 100
1 11 110
2 12 120
Run Code Online (Sandbox Code Playgroud)
现在我想迭代这个帧的行.对于每一行,我希望能够通过列的名称访问其元素(单元格中的值).例如:
for row in df.rows:
print row['c1'], row['c2']
Run Code Online (Sandbox Code Playgroud)
是否有可能在熊猫中做到这一点?
我发现了类似的问题.但它没有给我我需要的答案.例如,建议使用:
for date, row in df.T.iteritems():
Run Code Online (Sandbox Code Playgroud)
要么
for row in df.iterrows():
Run Code Online (Sandbox Code Playgroud)
但我不明白row对象是什么以及如何使用它.
对于C++,我们可以使用OpenMP进行并行编程; 但是,OpenMP不适用于Python.如果我想并行我的python程序的某些部分,我该怎么办?
代码的结构可以被认为是:
solve1(A)
solve2(B)
Run Code Online (Sandbox Code Playgroud)
哪里solve1和solve2是两个独立的功能.如何并行运行这种代码而不是按顺序运行以减少运行时间?希望可以有人帮帮我.首先十分感谢.代码是:
def solve(Q, G, n):
i = 0
tol = 10 ** -4
while i < 1000:
inneropt, partition, x = setinner(Q, G, n)
outeropt = setouter(Q, G, n)
if (outeropt - inneropt) / (1 + abs(outeropt) + abs(inneropt)) < tol:
break
node1 = partition[0]
node2 = partition[1]
G = updateGraph(G, node1, node2)
if i == 999:
print "Maximum iteration reaches"
print inneropt
Run Code Online (Sandbox Code Playgroud)
setinner和setouter是两个独立的函数.这就是我要平行的地方......