我想用lgb.Dataset对LightGBM模型进行交叉验证,并使用early_stopping_rounds.以下方法在XGBoost的xgboost.cv中没有问题.我不想将Scikit Learn的方法与GridSearchCV一起使用,因为它不支持提前停止或lgb.Dataset.
import lightgbm as lgb
from sklearn.metrics import mean_absolute_error
dftrainLGB = lgb.Dataset(data = dftrain, label = ytrain, feature_name = list(dftrain))
params = {'objective': 'regression'}
cv_results = lgb.cv(
params,
dftrainLGB,
num_boost_round=100,
nfold=3,
metrics='mae',
early_stopping_rounds=10
)
Run Code Online (Sandbox Code Playgroud)
任务是进行回归,但以下代码会引发错误:
Supported target types are: ('binary', 'multiclass'). Got 'continuous' instead.
LightGBM支持回归,还是我提供了错误的参数?