我想知道Spark是否知道镶木地板文件的分区键,并使用此信息来避免随机播放.
语境:
运行Spark 2.0.1运行本地SparkSession.我有一个csv数据集,我将其保存为我的磁盘上的镶木地板文件,如下所示:
val df0 = spark
.read
.format("csv")
.option("header", true)
.option("delimiter", ";")
.option("inferSchema", false)
.load("SomeFile.csv"))
val df = df0.repartition(partitionExprs = col("numerocarte"), numPartitions = 42)
df.write
.mode(SaveMode.Overwrite)
.format("parquet")
.option("inferSchema", false)
.save("SomeFile.parquet")
Run Code Online (Sandbox Code Playgroud)
我按列创建了42个分区numerocarte.这应该将多个组分组numerocarte到同一个分区.我write当时不想做partitionBy("numerocarte"),因为我不希望每张卡分区一个.它将是数百万.
之后在另一个脚本中,我读了这个SomeFile.parquet镶木地板文件并对其进行了一些操作.特别是我正在运行window function它,其中分区是在镶木地板文件被重新分区的同一列上完成的.
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
val df2 = spark.read
.format("parquet")
.option("header", true)
.option("inferSchema", false)
.load("SomeFile.parquet")
val w = Window.partitionBy(col("numerocarte"))
.orderBy(col("SomeColumn"))
df2.withColumn("NewColumnName",
sum(col("dollars").over(w))
Run Code Online (Sandbox Code Playgroud)
在read我看到repartition按预期工作后,DataFrame df2有42个分区,每个分区都有不同的卡.
问题:
df2是按列分区的numerocarte?