相关疑难解决方法(0)

在Spark DataFrame中查找每个组的最大行数

我正在尝试使用Spark数据帧而不是RDD,因为它们看起来比RDD更高级,并且往往会产生更易读的代码.

在一个14节点的Google Dataproc集群中,我有大约6百万个名称被两个不同的系统转换为ID:sasb.每个Row包含name,id_said_sb.我的目标是从生产映射id_said_sb使得对于每id_sa时,相应的id_sb是连接到所有名称中最常见的ID id_sa.

让我们试着用一个例子来澄清.如果我有以下行:

[Row(name='n1', id_sa='a1', id_sb='b1'),
 Row(name='n2', id_sa='a1', id_sb='b2'),
 Row(name='n3', id_sa='a1', id_sb='b2'),
 Row(name='n4', id_sa='a2', id_sb='b2')]
Run Code Online (Sandbox Code Playgroud)

我的目标是从生产映射a1b2.事实上,相关的名称a1n1,n2n3,分别映射b1,b2b2,因此b2是相关联的名称最常见的映射a1.以同样的方式,a2将映射到b2.可以假设总有一个胜利者:不需要打破关系.

我希望我可以使用groupBy(df.id_sa)我的数据帧,但我不知道接下来该做什么.我希望最终会产生以下行的聚合:

[Row(id_sa=a1, max_id_sb=b2),
 Row(id_sa=a2, max_id_sb=b2)]
Run Code Online (Sandbox Code Playgroud)

但也许我正在尝试使用错误的工具,我应该回到使用RDD.

apache-spark apache-spark-sql pyspark

42
推荐指数
2
解决办法
5万
查看次数

标签 统计

apache-spark ×1

apache-spark-sql ×1

pyspark ×1