基于这个转换训练的张量流模型到protobuf我试图保存/恢复TF图没有成功.
这是救星:
with tf.Graph().as_default():
variable_node = tf.Variable(1.0, name="variable_node")
output_node = tf.mul(variable_node, 2.0, name="output_node")
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
output = sess.run(output_node)
tf.train.write_graph(sess.graph.as_graph_def(), summ_dir, 'model_00_g.pbtxt', as_text=True)
#self.assertNear(2.0, output, 0.00001)
saver = tf.train.Saver()
saver.save(sess, saver_path)
Run Code Online (Sandbox Code Playgroud)
它产生model_00_g.pbtxt
了文本图形描述.几乎从freeze_graph_test.py复制粘贴.
这是读者:
with tf.Session() as sess:
with tf.Graph().as_default():
graph_def = tf.GraphDef()
graph_path = '/mnt/code/test_00/log/2016-02-11.22-37-46/model_00_g.pbtxt'
with open(graph_path, "rb") as f:
proto_b = f.read()
#print proto_b # -> I can see it
graph_def.ParseFromString(proto_b) # no luck..
_ = tf.import_graph_def(graph_def, name="")
print …
Run Code Online (Sandbox Code Playgroud) 我正在训练模型并保存它,现在我尝试加载但无法执行。我也在之前的帖子中看到过,但是一些参考链接不起作用,或者我尝试了一些方法,仍然无法解决问题。
代码片段:
#load model
with tf.io.gfile.GFile(args.model, "rb") as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
# with tf.Graph().as_default() as graph:
generated_image_1, generated_image_2, generated_image_3, = tf.graph_util.import_graph_def(
graph_def,
input_map={'input_image' : input_tensor, 'short_edge_1' : short_edge_1, 'short_edge_2' : short_edge_2, 'short_edge_3' : short_edge_3},
return_elements=['style_subnet/conv-block/resize_conv_1/output:0', 'enhance_subnet/resize_conv_1/output:0', 'refine_subnet/resize_conv_1/output:0'],
producer_op_list=None
)
Run Code Online (Sandbox Code Playgroud)
错误
Traceback (most recent call last):
File "stylize.py", line 97, in <module>
main()
File "stylize.py", line 57, in main
graph_def.ParseFromString(f.read())
google.protobuf.message.DecodeError: Error parsing message with type 'tensorflow.GraphDef'
Run Code Online (Sandbox Code Playgroud)
注意:如果需要更多相关信息,请务必在此处添加。让我知道
python image-processing deep-learning tensorflow tensorboard
我正在尝试运行一个脚本以从 tensorflow .pb 模型中获取文本摘要,如下所示:
OPS counts:
Squeeze : 1
Softmax : 1
BiasAdd : 1
Placeholder : 1
AvgPool : 1
Reshape : 2
ConcatV2 : 9
MaxPool : 13
Sub : 57
Rsqrt : 57
Relu : 57
Conv2D : 58
Add : 114
Mul : 114
Identity : 231
Const : 298
Run Code Online (Sandbox Code Playgroud)
我总体上尝试将 .pb 模型转换为 .coremlmodel 并关注这篇文章:
https://hackernoon.com/integrating-tensorflow-model-in-an-ios-app-cecf30b9068d
从 .pb 模型中获取文本摘要是朝着这个目标迈出的一步。我尝试运行来创建文本摘要的代码如下:
import tensorflow as tf
from tensorflow.core.framework import graph_pb2
import time
import operator
import sys
def inspect(model_pb, output_txt_file): …
Run Code Online (Sandbox Code Playgroud)