相关疑难解决方法(0)

了解Keras LSTM

我试图调和我对LSTM的理解,并在克里斯托弗·奥拉在克拉拉斯实施的这篇文章中指出.我正在关注Jason Brownlee为Keras教程撰写博客.我主要困惑的是,

  1. 将数据系列重塑为[samples, time steps, features]和,
  2. 有状态的LSTM

让我们参考下面粘贴的代码集中讨论上述两个问题:

# reshape into X=t and Y=t+1
look_back = 3
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)

# reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], look_back, 1))
testX = numpy.reshape(testX, (testX.shape[0], look_back, 1))
########################
# The IMPORTANT BIT
##########################
# create and fit the LSTM network
batch_size = 1
model = Sequential()
model.add(LSTM(4, …
Run Code Online (Sandbox Code Playgroud)

python deep-learning lstm keras

259
推荐指数
4
解决办法
4万
查看次数

Keras - 有状态与无状态LSTM

我很难概念化Keras中有状态和无状态LSTM之间的区别.我的理解是,在每个批处理结束时,在无状态情况下"重置网络状态",而对于有状态情况,每个批处理都保留网络状态,然后必须在每个时代的结束.

我的问题如下:1.在无状态的情况下,如果状态未在批次之间保留,网络如何学习?2.何时使用LSTM的无状态与有状态模式?

deep-learning lstm keras tensorflow

19
推荐指数
2
解决办法
5927
查看次数

标签 统计

deep-learning ×2

keras ×2

lstm ×2

python ×1

tensorflow ×1