我在Pandas中有一个DataFrame:
In [7]: my_df
Out[7]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 34 entries, 0 to 0
Columns: 2661 entries, airplane to zoo
dtypes: float64(2659), object(2)
Run Code Online (Sandbox Code Playgroud)
当我尝试将其保存到磁盘时:
store = pd.HDFStore(p_full_h5)
store.append('my_df', my_df)
Run Code Online (Sandbox Code Playgroud)
我明白了:
File "H5A.c", line 254, in H5Acreate2
unable to create attribute
File "H5A.c", line 503, in H5A_create
unable to create attribute in object header
File "H5Oattribute.c", line 347, in H5O_attr_create
unable to create new attribute in header
File "H5Omessage.c", line 224, in H5O_msg_append_real
unable to create new message
File "H5Omessage.c", line 1945, …Run Code Online (Sandbox Code Playgroud) 当我运行 pickle.dump(model,open('modelDL.pkl','wb')) 时,我收到 TypeError: can't pickle weakref objects。
我创建了一个深度学习模型,我正在尝试保存它。下面是模型。
model = Sequential()
model.add( Dense(30,activation='relu') )
model.add( Dropout(0.5) )
model.add( Dense(20,activation='relu') )
model.add( Dropout(0.5) )
model.add( Dense(20,activation='relu') )
model.add( Dropout(0.5) )
model.add( Dense(1,activation='sigmoid') )
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
Run Code Online (Sandbox Code Playgroud) classification python-3.x deep-learning tf.keras tensorflow2.0