我有一个pandas DataFrame,我想上传到新的CSV文件.问题是我不想在将文件传输到s3之前将其保存在本地.是否有像to_csv这样的方法直接将数据帧写入s3?我正在使用boto3.
这是我到目前为止:
import boto3
s3 = boto3.client('s3', aws_access_key_id='key', aws_secret_access_key='secret_key')
read_file = s3.get_object(Bucket, Key)
df = pd.read_csv(read_file['Body'])
# Make alterations to DataFrame
# Then export DataFrame to CSV through direct transfer to s3
Run Code Online (Sandbox Code Playgroud) 我有一个文本文件保存在S3上,这是一个制表符分隔表.我想将它加载到pandas但不能保存它,因为我在heroku服务器上运行.这是我到目前为止所拥有的.
import io
import boto3
import os
import pandas as pd
os.environ["AWS_ACCESS_KEY_ID"] = "xxxxxxxx"
os.environ["AWS_SECRET_ACCESS_KEY"] = "xxxxxxxx"
s3_client = boto3.client('s3')
response = s3_client.get_object(Bucket="my_bucket",Key="filename.txt")
file = response["Body"]
pd.read_csv(file, header=14, delimiter="\t", low_memory=False)
Run Code Online (Sandbox Code Playgroud)
错误是
OSError: Expected file path name or file-like object, got <class 'bytes'> type
Run Code Online (Sandbox Code Playgroud)
如何将响应体转换为pandas接受的格式?
pd.read_csv(io.StringIO(file), header=14, delimiter="\t", low_memory=False)
returns
TypeError: initial_value must be str or None, not StreamingBody
pd.read_csv(io.BytesIO(file), header=14, delimiter="\t", low_memory=False)
returns
TypeError: 'StreamingBody' does not support the buffer interface
Run Code Online (Sandbox Code Playgroud)
更新 - 使用以下工作
file = response["Body"].read()
Run Code Online (Sandbox Code Playgroud)
和
pd.read_csv(io.BytesIO(file), header=14, …Run Code Online (Sandbox Code Playgroud)